Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast


Microtubules are essential intracellular structures involved in several cellular phenomena, including polarity establishment and chromosome segregation1. Because the nuclear envelope persists during mitosis (closed mitosis) in fission yeast (Schizosaccharomyces pombe), cytoplasmic microtubules must be reorganized into the spindle in the compartmentalized nucleus on mitotic entry2. An ideal mechanism might be to take advantage of an evolutionarily conserved microtubule formation system that uses the Ran-GTPase nuclear transport machinery3,4,5, but no targets of Ran for spindle formation have been identified in yeast. Here we show that a microtubule-associated protein, Alp7, which forms a complex with Alp14, is a target of Ran in yeast for spindle formation. The Ran-deficient pim1 mutant (pim1-F201S) failed to show mitosis-specific nuclear accumulation of Alp7. Moreover, this mutant exhibited compromised spindle formation and early mitotic delay. Importantly, these defects were suppressed by Alp7 that was artificially targeted to the nucleus by a Ran-independent and importin-α-mediated system. Thus, Ran targets Alp7–Alp14 to achieve nuclear spindle formation, and might differentiate its targets depending on whether the organism undergoes closed or open mitosis.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Defects in bipolar spindle formation in the pim1 mutant.
Figure 2: Alp7 is a target of the Ran-dependent transport machinery.
Figure 3: Establishment of a Ran-independent nuclear import and unloading system by importin-α and TEV protease.
Figure 4: The Imp1*–tev–Alp7 system restores spindle formation and mitotic progression of the pim1-F201S mutant.


  1. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329– 342 (1986)

    CAS  Article  Google Scholar 

  2. Hagan, I. M. & Hyams, J. S. The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe.. J. Cell Sci. 89, 343– 357 (1988)

    PubMed  Google Scholar 

  3. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, E177– E184 (2002)

    CAS  Article  Google Scholar 

  4. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543– 547 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Zheng, Y. G protein control of microtubule assembly. Annu. Rev. Cell Dev. Biol. 20, 867– 894 (2004)

    CAS  Article  Google Scholar 

  6. Hirose, E. et al. Loss of RanGEF/Pim1 activity abolishes the orchestration of Ran-mediated mitotic cellular events in S. pombe. Genes Cells 11, 29– 46 (2006)

    CAS  Article  Google Scholar 

  7. Fleig, U., Salus, S. S., Karig, I. & Sazer, S. The fission yeast ran GTPase is required for microtubule integrity. J. Cell Biol. 151, 1101– 1111 (2000)

    CAS  Article  Google Scholar 

  8. Salus, S. S., Demeter, J. & Sazer, S. The Ran GTPase system in fission yeast affects microtubules and cytokinesis in cells that are competent for nucleocytoplasmic protein transport. Mol. Cell. Biol. 22, 8491– 8505 (2002)

    CAS  Article  Google Scholar 

  9. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83– 93 (2001)

    CAS  Article  Google Scholar 

  10. Wiese, C. et al. Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653– 656 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Nachury, M. V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95– 106 (2001)

    CAS  Article  Google Scholar 

  12. Oliferenko, S. & Balasubramanian, M. K. Astral microtubules monitor metaphase spindle alignment in fission yeast. Nature Cell Biol. 4, 816– 820 (2002)

    CAS  Article  Google Scholar 

  13. Sato, M., Vardy, L., Garcia, M. A., Koonrugsa, N. & Toda, T. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol. Biol. Cell 15, 1609– 1622 (2004)

    CAS  Article  Google Scholar 

  14. Garcia, M. A., Vardy, L., Koonrugsa, N. & Toda, T. Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J. 20, 3389– 3401 (2001)

    CAS  Article  Google Scholar 

  15. Nakaseko, Y., Goshima, G., Morishita, J. & Yanagida, M. M phase-specific kinetochore proteins in fission yeast: microtubule-associating Dis1 and Mtc1 display rapid separation and segregation during anaphase. Curr. Biol. 11, 537– 549 (2001)

    CAS  Article  Google Scholar 

  16. Sato, M. et al. Deletion of Mia1/Alp7 activates Mad2-dependent spindle assembly checkpoint in fission yeast. Nature Cell Biol. 5, 764– 766 (2003)

    CAS  Article  Google Scholar 

  17. Koffa, M. D. et al. HURP is part of a Ran-dependent complex involved in spindle formation. Curr. Biol. 16, 743– 754 (2006)

    CAS  Article  Google Scholar 

  18. Sillje, H. H., Nagel, S., Korner, R. & Nigg, E. A. HURP is a Ran-importin β-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr. Biol. 16, 731– 742 (2006)

    CAS  Article  Google Scholar 

  19. Miyamoto, Y. et al. Importin α can migrate into the nucleus in an importin β- and Ran-independent manner. EMBO J. 21, 5833– 5842 (2002)

    CAS  Article  Google Scholar 

  20. Umeda, M., Izaddoost, S., Cushman, I., Moore, M. S. & Sazer, S. The fission yeast Schizosaccharomyces pombe has two importin-α proteins, Imp1p and Cut15p, which have common and unique functions in nucleocytoplasmic transport and cell cycle progression. Genetics 171, 7– 21 (2005)

    CAS  Article  Google Scholar 

  21. Matsumoto, T. & Beach, D. Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66, 347– 360 (1991)

    CAS  Article  Google Scholar 

  22. Sazer, S. & Nurse, P. A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J. 13, 606– 615 (1994)

    CAS  Article  Google Scholar 

  23. Brittle, A. L. & Ohkura, H. Centrosome maturation: Aurora lights the way to the poles. Curr. Biol. 15, R880– R882 (2005)

    CAS  Article  Google Scholar 

  24. Gruss, O. J. & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949– 955 (2004)

    CAS  Article  Google Scholar 

  25. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420– 425 (1996)

    ADS  CAS  Article  Google Scholar 

  26. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452– 2456 (2002)

    ADS  CAS  Article  Google Scholar 

  27. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373– 1376 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Carazo-Salas, R. E. & Karsenti, E. Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr. Biol. 13, 1728– 1733 (2003)

    CAS  Article  Google Scholar 

  29. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803– 817 (2005)

    CAS  Article  Google Scholar 

  30. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943– 951 (1998)

    Article  Google Scholar 

  31. Sato, M., Dhut, S. & Toda, T. New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe. Yeast 22, 583– 591 (2005)

    CAS  Article  Google Scholar 

  32. Usui, T., Maekawa, H., Pereira, G. & Schiebel, E. The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO J. 22, 4779– 4793 (2003)

    CAS  Article  Google Scholar 

  33. Sato, M. et al. Deletion of Mia1/Alp7 activates Mad2-dependent spindle assembly checkpoint in fission yeast. Nature Cell Biol. 5, 764– 766 (2003)

    CAS  Article  Google Scholar 

  34. Yamashita, A., Sato, M., Fujita, A., Yamamoto, M. & Toda, T. The roles of fission yeast Ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 16, 1378– 1395 (2005)

    CAS  Article  Google Scholar 

Download references


We thank E. Karsenti for comments and R. E. Carazo-Salas and M. Toya for critical reading of the manuscript, discussion and technical support for microscopy. We also thank M. Yoshida, H. Maekawa, E. Schiebel, I. Hagan, R. Y. Tsien, S. Yokobayashi and Y. Watanabe for plasmids and/or information. We are grateful to members of the Cell Regulation Laboratory and M. Yamamoto for support. This work is supported by Cancer Research UK. M.S. is a recipient of a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad.

Author Contributions The experiments were designed by M.S with the support of T.T. and performed by M.S. M.S. and T.T. wrote the paper.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Masamitsu Sato or Takashi Toda.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Methods, Supplementary Tables 1-2, Supplementary Figures S1-S8 and additional references. (PDF 1239 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sato, M., Toda, T. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 447, 334–337 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing