A chromatin link that couples cell division to root epidermis patterning in Arabidopsis

Abstract

Cell proliferation and cell fate decisions are strictly coupled processes during plant embryogenesis and organogenesis1,2,3,4,5. In the Arabidopsis thaliana root epidermis, expression of the homeobox GLABRA2 (GL2) gene determines hair/non-hair cell fate6,7. This requires signalling of positional information from the underlying cortical layer8,9, complex transcriptional regulation10,11 and a change in chromatin accessibility12. However, the molecular connections among these factors and with cell division are not known. Here we have identified a GL2-expression modulator, GEM, as an interactor of CDT1, a DNA replication protein. GEM also interacts with TTG1 (TRANSPARENT TESTA GLABRA1), a WD40-repeat protein involved in GL2-dependent cell fate decision, and modulates both cell division and GL2 expression. Here we show that GEM participates in the maintenance of the repressor histone H3K9 methylation status of root patterning genes, providing a link between cell division, fate and differentiation during Arabidopsis root development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identification of GEM , and root hair and trichome phenotypes in mutant plants.
Figure 2: GEM regulates the expression of the cell fate GL2 gene and the epidermal cell division rate.
Figure 3: GEM interacts with TTG1, CDT1 and with the GL2 and CPC promoters.
Figure 4: GEM controls the histone H3 acetylation and K9 methylation status of GL2 and CPC genes.

References

  1. 1

    Blilou, I. et al. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev. 16, 2566–2575 (2002)

    CAS  Article  Google Scholar 

  2. 2

    Fletcher, J. C. Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. Bioassays 24, 27–37 (2002)

    Article  Google Scholar 

  3. 3

    Gutierrez, C. Coupling cell proliferation and development in plants. Nature Cell Biol. 6, 535–541 (2005)

    Article  Google Scholar 

  4. 4

    Jenik, J. W., Jurkuta, R. E. & Barton, M. K. Interactions between the cell cycle and embryonic patterning in Arabidopsis uncovered by a mutation in DNA polymerase epsilon. Plant Cell 17, 3362–3377 (2005)

    CAS  Article  Google Scholar 

  5. 5

    Wildwater, M. et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005)

    CAS  Article  Google Scholar 

  6. 6

    Di Cristina, M. et al. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J. 10, 393–402 (1994)

    Article  Google Scholar 

  7. 7

    Masucci, J. D. et al. The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122, 1253–1260 (1996)

    CAS  PubMed  Google Scholar 

  8. 8

    Dolan, L. et al. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71–84 (1993)

    CAS  PubMed  Google Scholar 

  9. 9

    Kwak, S.-H., Shen, R. & Schiefelbein, J. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307, 1111–1113 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Larkin, J. C., Brown, M. L. & Schiefelbein, J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu. Rev. Plant Biol. 54, 403–430 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Guimil, S. & Dunand, C. Patterning of Arabidopsis epidermal cells: epigenetic factors regulate the complex epidermal cell fate pathway. Trends Plant Sci. 11, 601–609 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Costa, S. & Shaw, P. Chromatin organization and cell fate switch respond to positional information in Arabidopsis. Nature 439, 493–496 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Serna, L. A network of interacting factors triggering different cell fates. Plant Cell 16, 2258–2263 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Berger, F., Hung, C.-Y., Dolan, L. & Schiefelbein, J. Control of cell division in the root epidermis of Arabidopsis thaliana. Dev. Biol. 194, 235–245 (1998)

    CAS  Article  Google Scholar 

  15. 15

    DePamphilis, M. L. et al. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18, 231–239 (2006)

    CAS  Article  Google Scholar 

  16. 16

    Castellano, M. M., Boniotti, M. B., Caro, E., Schnittger, A. & Gutierrez, C. DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16, 2380–2393 (2004)

    CAS  Article  Google Scholar 

  17. 17

    Bernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A. & Schiefelbein, J. The bHLH genes GL3 and EGL3 participate in an intracellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132, 291–298 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Kurata, T. et al. Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132, 5387–5398 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Ryu, K. H. et al. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development 132, 4765–4775 (2005)

    CAS  Article  Google Scholar 

  20. 20

    Chevalier, D. et al. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 9074–9079 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Xu, C.-R. et al. Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis. Proc. Natl Acad. Sci. USA 102, 14469–14474 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Fischer, A., Hofmann, I., Naumann, K. & Reuter, G. Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J. Plant Physiol. 163, 358–368 (2006)

    CAS  Article  Google Scholar 

  23. 23

    Fransz, P., ten Hoopen, R. & Tessadori, F. Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosome Res. 14, 71–82 (2006)

    CAS  Article  Google Scholar 

  24. 24

    Fuchs, J., Demidov, D., Houben, A. & Schubert, I. Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci. 11, 199–208 (2006)

    CAS  Article  Google Scholar 

  25. 25

    Seo, S. & Kroll, K. L. Geminin’s double life. Cell Cycle 5, 374–380 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Melixetian, M. et al. Loss of geminin induces rereplication in the presence of functional p53. J. Cell Biol. 165, 473–482 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Zhu, W., Chen, Y. & Dutta, A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol. Cell. Biol. 24, 7140–7150 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)

    CAS  Article  Google Scholar 

  29. 29

    Ramirez-Parra, E., Lopez-Matas, M. A., Fründt, C. & Gutierrez, C. Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16, 2350–2363 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Menges, M., de Jager, S. M., Gruissem, W. & Murray, J. A. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J. 41, 546–566 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Ramirez-Parra, E. & Gutierrez, C. Characterization of wheat DP, a heterodimerization partner of the plant E2F transcription factor which stimulates E2F-DNA binding. FEBS Lett. 486, 73–78 (2000)

    CAS  Article  Google Scholar 

  32. 32

    Egea-Cortines, M., Saedler, H. & Sommer, H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379 (1999)

    CAS  Article  Google Scholar 

  33. 33

    Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N.-H. & Gutierrez, C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140, 67–80 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Menges, M. & Murray, J. A. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J. 30, 203–212 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical help of A. Diaz and C. Vaca. We thank J. Schiefelbein for the pGL2-GUS, scm-2 and ttg1-1 seeds, and M. Cortés for the root sections, L. Tormo for the scanning electron microscopy, and J. Schiefelbein, M. A. Blasco, B. Scheres, P. Benfey, L. Serna, E. Martinez-Salas, and J. A. Tercero for comments. E.C. is a recipient of a PhD Fellowship from the Spanish Ministry of Education and Science. Research was supported by grants from the Spanish Ministry of Education and Science, and by an institutional grant from Fundación Ramón Areces.

Author Contributions C.G. supervised the project and wrote the manuscript with comments from co-authors. M.M.C. started the project isolating the GEM cDNA by yeast two-hybrid screening and studying the CDT1–GEM interaction. E.C. and C.G. conceived and designed the rest of the experiments, which were all performed by E.C.

The NCBI/GenBank accession number for the gene identified in this manuscript is EF490993 (GEM mRNA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Crisanto Gutierrez.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 and additional references. (PDF 943 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caro, E., Castellano, M. & Gutierrez, C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 447, 213–217 (2007). https://doi.org/10.1038/nature05763

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing