Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites


Chlorine in the Earth is highly depleted relative to carbonaceous chondrites and solar abundances1. Knowledge of the Cl concentrations and distribution on Earth is essential for understanding the origin of these depletions. Large differences in the stable chlorine isotope ratios of meteoritic, mantle and crustal materials have been used as evidence for distinct reservoirs in the solar nebula2 and to calculate the relative proportions of Cl in the mantle and crust3. Here we report that large isotopic differences do not exist, and that carbonaceous chondrites, mantle and crust all have the same 37Cl/35Cl ratios. We have further analysed crustal sediments from the early Archaean era to the Recent epoch and find no systematic isotopic variations with age, demonstrating that the mantle and crust have always had the same δ37Cl value. The similarity of mantle, crust and carbonaceous chondrites establishes that there were no nebular reservoirs with distinct isotopic compositions, no isotopic fractionation during differentiation of the Earth and no late (post-core formation) Cl-bearing volatile additions to the crustal veneer with a unique isotopic composition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ 37 Cl values of selected terrestrial and chondritic samples.
Figure 2: Measured δ 37 Cl values of crustal sediments plotted as a function of age.

Similar content being viewed by others


  1. Wänke, H. & Dreibus, G. Chemical compilation and accretion history of terrestrial planets. Phil. Trans. R. Soc. Lond. A 325, 545–557 (1988)

    Article  ADS  Google Scholar 

  2. Bridges, J. C., Banks, D. A., Smith, M. & Grady, M. M. Halite and stable chlorine isotopes in the Zag H3-6 breccia. Meteorit. Planet. Sci. 39, 657–666 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Magenheim, A. J., Spivack, A. J., Michael, P. J. & Gieskes, J. M. Chlorine stable-isotope composition of the oceanic-crust: Implications for Earth's distribution of chlorine. Earth Planet. Sci. Lett. 131, 427–432 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Kargel, J. S. Earth’s volatility trend and the case of the missing halogens.. Geol. Soc. Am. Prog. Abstr. 29, 190 (1997)

    Google Scholar 

  5. Kaufmann, R., Long, A., Bentley, H. & Davis, S. Natural chlorine isotope variations. Nature 309, 338–340 (1984)

    Article  ADS  CAS  Google Scholar 

  6. Barnes, J. D. Tectonic and Metamorphic Implications of High Chlorine Contents in Serpentinites. 1–161, PhD thesis, Univ. New Mexico. (2006)

  7. Magenheim, A. J., Spivack, A. J., Volpe, C. & Ransom, B. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim. Cosmochim. Acta 58, 3117–3121 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Brearley, A. J. & Jones, R. H. in Planetary Materials (ed. Papike, J. J.) 3, 1–398 (Mineral. Soc. Am., Washington DC, 1998)

    Google Scholar 

  9. Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. & Wasserburg, G. J. A late episode of irradiation in the early Solar System: Evidence from extinct 36Cl and 26Al in meteorites. Astrophys. J. 640, 525–529 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Kamenetsky, M. B., Sharygin, V. V., Faure, K. & Golovin, A. V. Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia). Chemical Geol. 237, 384–400 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Gounelle, M. & Zolensky, M. E. A terrestrial origin for sulfate veins in CI1 chondrites. Meteorit. Planet. Sci. 36, 1321–1329 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Eggenkamp, H. G. M., Kreulen, R. & Koster van Groos, A. F. Chloride stable isotope fractionation in evaporites. Geochim. Cosmochim. Acta 59, 5169–5175 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Sharp, Z. D. & Barnes, J. D. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet. Sci. Lett. 226, 243–254 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Rubey, W. W. Geologic history of sea water: an attempt to state the problem. Bull. Geol. Soc. Am. 62, 1111–1148 (1951)

    Article  CAS  Google Scholar 

  15. McDonough, W. F. in Treatise on Geochemistry (eds Holland, H. D. & Turrekian, K. K.) 547–568 (Elsevier, Amsterdam, 2004)

    Google Scholar 

  16. Mittlefehldt, D. W. Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites. Meteorit. Planet. Sci. 37, 703–712 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Layne, G. D., Godon, A., Webster, J. D. & Bach, W. Secondary ion mass spectrometry for the determination of δ37Cl: Part I. Ion microprobe analysis of glasses and fluids. Chem. Geol. 207, 277–289 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Eastoe, C. J. & Peryt, T. Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region. Terra Nova 11, 118–123 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Renne, P. R., Sharp, W. D., Montañez, I. P., Becker, T. A. & Zierenberg, R. A. 40Ar/39Ar dating of Late Permian evaporites, southeastern New Mexico, USA. Earth Planet. Sci. Lett. 193, 539–547 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Amthor, J. A. et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31, 431–434 (2003)

    Article  ADS  Google Scholar 

  21. Lowe, D. R. & Knauth, L. P. Sedimentology of the Onverwacht Group (3.4 billion years),Transvaal, South Africa, and its bearing on the characteristics and evolution of the Early Earth. J. Geol. 85, 695–723 (1977)

    Article  ADS  Google Scholar 

  22. Perry, E. C., Hickman, A. H. & Barnes, I. L. Archean sedimentary barite, Pilbara goldfield, western Australia. Geol. Soc. Am. Prog. Abstr. 7, 1226 (1975)

    Google Scholar 

  23. Okakangas, R. W., Morey, G. B. & Southwick, D. L. Paleoproterozoic basin development and sedimentation in the Lake Superior region, North America. Sedim. Geol. 141, 319–341 (2001)

    Article  ADS  Google Scholar 

  24. Sharp, Z. D., Durakiewicz, T., Migaszewski, Z. M. & Atudorei, V. N. Antiphase hydrogen and oxygen isotope periodicity in chert nodules. Geochim. Cosmochim. Acta 66, 2865–2873 (2002)

    Article  ADS  CAS  Google Scholar 

  25. Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C. & Kinny, P. D. The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900–3600 Ma). Precambr. Res. 78, 1–39 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Moore, T. B. & Schopf, J. W. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 603–693 (Cambridge Univ. Press, Cambridge, 1992)

    Book  Google Scholar 

  27. Burnard, P., Marty, B., Fischer, T. & Hilton, D. Noble gases in carbonatite magmatism: Oldonyo Lengai. Eos (Fall Meet. Suppl.), 87 (52), abstr. V23C–0645 (2006)

  28. Eggenkamp, H. G. M. & Koster van Groos, A. F. Chlorine stable isotopes in carbonatites: evidence for isotopic heterogeneity in the mantle. Chem. Geol. 140, 137–143 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Eastoe, C. J., Peryt, T. M., Petrychenko, O. Y. & Geisler-Cussey, D. Stable chlorine isotopes in Phanerozoic evaporites. Appl. Geochem. 22, 575–588 (2007)

    Article  CAS  Google Scholar 

Download references


We thank E. Hauri, J. Grotzinger, P. Knauth, F. Longstaffe, C. Manning, E. Perry, B. Schopf, M. Perfit, C. Langmuir, D. Hilton, J. Bender, P. Castillo, P. Plechov and V. Sharygin for contributing invaluable samples for this study. Financial support was provided by the National Science Foundation to Z.D.S. and NASA to A.J.B.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Z. D. Sharp.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Table 1-2 and additional references. (PDF 287 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharp, Z., Barnes, J., Brearley, A. et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446, 1062–1065 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing