Iron meteorite evidence for early formation and catastrophic disruption of protoplanets

Abstract

In our Solar System, the planets formed by collisional growth from smaller bodies. Planetesimals collided to form Moon-to-Mars-sized protoplanets in the inner Solar System in 0.1–1 Myr, and these collided more energetically to form planets1. Insights into the timing and nature of collisions during planetary accretion can be gained from meteorite studies. In particular, iron meteorites offer the best constraints on early stages of planetary accretion because most are remnants of the oldest bodies, which accreted and melted in <1.5 Myr, forming silicate mantles and iron-nickel metallic cores2,3,4. Cooling rates for various groups of iron meteorites suggest that if the irons cooled isothermally in the cores of differentiated bodies, as conventionally assumed, these bodies were 5–200 km in diameter5,6. This picture is incompatible, however, with the diverse cooling rates observed within certain groups, most notably the IVA group7,8, but the large uncertainties associated with the measurements do not preclude it. Here we report cooling rates for group IVA iron meteorites that range from 100 to 6,000 K Myr-1, increasing with decreasing bulk Ni. Improvements in the cooling rate model, smaller error bars, and new data from an independent cooling rate indicator9 show that the conventional interpretation is no longer viable. Our results require that the IVA meteorites cooled in a 300-km-diameter metallic body that lacked an insulating mantle. This body probably formed 4,500 Myr ago in a ‘hit-and-run’ collision between Moon-to-Mars-sized protoplanets10. This demonstrates that protoplanets of 103 km size accreted within the first 1.5 Myr, as proposed by theory, and that fragments of these bodies survived as asteroids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dependence of cooling rate and cloudy zone particle size of IVA irons on the bulk meteorite composition.
Figure 2: Microstructure of the cloudy zone in the Steinbach IVA iron.
Figure 3: Variation of the size of the cloudy zone particles in individual mesosiderites and iron meteorites with metallographic cooling rate.
Figure 4: Variation with radial location and temperature of the cooling rates inside a 150-km-radius solid metallic body exposed to space.

References

  1. 1

    Chambers, J. E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Kleine, T., Mezger, K., Palme, H., Scherer, E. & Münker, C. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim. Cosmochim. Acta 69, 5805–5818 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. & Masarik, J. Hf-W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–542 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Hevey, P. J. & Sanders, I. S. A model for planetesimal meltdown by 26Al, and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41, 95–106 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Wasson, J. T., Matsunami, Y. & Rubin, A. E. Silica and pyroxene in IVA irons; possible formation of the IVA magma by impact melting and reduction of L–LL-chondrite materials followed by crystallization and cooling. Geochim. Cosmochim. Acta 70, 3149–3172 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Chabot, N. L. & Haack, H. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 747–771 (Univ. Arizona Press, Tucson, 2006)

    Google Scholar 

  7. 7

    Moren, A. E. & Goldstein, J. I. Cooling rates of group IVA iron meteorites determined from a ternary Fe-Ni-P model. Earth Planet. Sci. Lett. 43, 82–96 (1979)

    Article  Google Scholar 

  8. 8

    Rasmussen, K. L., Ulff-Moller, F. & Haack, H. The thermal evolution of IVA iron meteorites: Evidence from metallographic cooling rates. Geochim. Cosmochim. Acta 59, 3049–3059 (1995)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Yang, C.-W., Williams, D. B. & Goldstein, J. I. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phase. Meteorit. Planet. Sci. 32, 423–429 (1997)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Asphaug, E., Agnor, C. B. & Williams, Q. Hit-and-run planetary collisions. Nature 439, 155–160 (2006)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Haack, H., Rasmussen, K. L. & Warren, P. H. Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids. J. Geophys. Res. 95, 5111–5124 (1990)

    ADS  Article  Google Scholar 

  12. 12

    Haack, H., Scott, E. R. D., Love, S. G., Brearley, A. J. & McCoy, T. J. Thermal histories of IVA stony-iron and iron meteorites: Evidence for asteroid fragmentation and reaccretion. Geochim. Cosmochim. Acta 60, 3103–3113 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wasson, J. T. & Richardson, J. W. Fractionation trends among IVA iron meteorites: contrast with IIIAB trends. Geochim. Cosmochim. Acta 65, 951–970 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Yang, J. & Goldstein, J. I. Metallographic cooling rates of the IIIAB iron meteorites. Geochim. Cosmochim. Acta 70, 3197–3215 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Scott, E. R. D., Haack, H. & McCoy, T. J. Core crystallization and silicate-metal mixing in the parent body of the IVA iron and stony-iron meteorites. Geochim. Cosmochim. Acta 60, 1615–1631 (1996)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Haack, H. & Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. J. Geophys. Res. 97, 14727–14734 (1992)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Ruzicka, A. & Hutson, M. Differentiation and evolution of the IVA meteorite parent body: clues from pyroxene geochemistry in the Steinbach stony-iron meteorite. Meteorit. Planet. Sci. 41, 1959–1987 (2006)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Halliday, A. N. & Kleine, T. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 775–801 (Univ. Arizona Press, Tucson, 2006)

    Google Scholar 

  19. 19

    Keil, K., Haack, H. & Scott, E. R. D. Catastrophic fragmentation of asteroids: evidence from meteorites. Planet. Space Sci. 42, 1109–1122 (1994)

    ADS  Article  Google Scholar 

  20. 20

    Randich, E. & Goldstein, J. I. Cooling rates of seven hexahedrites. Geochim. Cosmochim. Acta 42, 221–233 (1978)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Rasmussen, K. L. Cooling rates and parent bodies of iron meteorites from group IIICD, IAB, and IVB. Phys. Scripta 39, 410–416 (1989)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Davis, D. R., Durda, D. D., Marzari, F., Bagatin, A. C. & Gil-Hutton, R. G. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 545–558 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  23. 23

    Petit, J.-M., Chambers, J., Franklin, F. & Nagasawa, M. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 711–723 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  24. 24

    Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical extinction and depletion. Icarus 179, 63–94 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Scott, E. R. D., Haack, H. & Love, S. G. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36, 869–881 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Wood, J. A. The cooling rates and parent bodies of several iron meteorites. Icarus 3, 429–459 (1964)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Von Rosenberg, D. U. Methods for the Numerical Solution of Partial Differential Equations (American Elsevier Publishing Company, New York, 1969)

    Google Scholar 

  29. 29

    Jain, A. V. & Lipschutz, M. E. On preferred disorder and shock history of chemical group IVA meteorites. Geochim. Cosmochim. Acta 34, 883–892 (1970)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Hopfe, W. D. & Goldstein, J. I. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites. Meteorit. Planet. Sci. 36, 135–154 (2001)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from the NASA Cosmochemistry programme is acknowledged. We thank T. J. McCoy, L. Welzenbach, D. S. Ebel and J. Boesenberg for providing the meteorite samples; M. J. Jercinovic, J. R. Michael and P. Kotula for assistance and advice in obtaining electron microprobe and microscopy data; G. J. Taylor, E. Asphaug, W. F. Bottke and A. Ruzicka for discussions; and H. Haack, J. T. Wasson and J. A. Wood for critically reading the manuscript.

Author Contributions J.Y., J.I.G. and E.R.D.S. contributed equally to this work. J.Y. determined the metallographic cooling rates and established the thermal model. J.I.G. measured the cloudy zone particle size. E.R.D.S. provided the planetary science perspective. All authors discussed the results, wrote portions of the paper and commented on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jijin Yang.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table S1, Supplementary Notes and additional references. Supplementary Table provides the bulk P content of IVA irons. Supplementary Notes discuss the potential errors in determining the metallographic cooling rates in addition to that discussed in text. (PDF 322 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Goldstein, J. & Scott, E. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446, 888–891 (2007). https://doi.org/10.1038/nature05735

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.