Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An integrated model of kimberlite ascent and eruption

Abstract

Diatremes are carrot-shaped bodies forming the upper parts of very deep magmatic intrusions of kimberlite rock. These unusual, enigmatic and complex features are famous as the source of diamonds. Here we present a new model of kimberlite ascent and eruption, emphasizing the extremely unsteady nature of this process to resolve many of the seemingly contradictory characteristics of kimberlites and diatremes. Dyke initiation in a deep CO2-rich source region in the mantle leads to rapid propagation of the dyke tip, below which CO2 fluid collects, with a zone of magmatic foam beneath. When the tip breaks the surface of the ground, gas release causes a depressurization wave to travel into the magma. This wave implodes the dyke walls, fragments the magma, and creates a ‘ringing’ fluidization wave. Together, these processes form the diatreme. Catastrophic magma chilling seals the dyke. No precursor to the eruption is felt at the surface and the processes are complete in about an hour.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Model of an idealized kimberlite magmatic system illustrating the relationships between crater, diatreme, and hypabyssal zones and facies rocks.
Figure 2: Sequence of events in the generation, ascent and eruption of kimberlitic magmas and diatreme formation (see text for details).

References

  1. 1

    Vespermann, D. & Schmincke, H. in Encyclopedia of Volcanoes (ed. Sigurdsson, H.) 683–694 (Academic Press, San Diego, California, 2000)

    Google Scholar 

  2. 2

    Field, M. & Scott Smith, B. in Proc. 7th Int. Kimberlite Conf. (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) Vol. 1 214–237 (Red Roof Design, Cape Town, 1999)

  3. 3

    Mitchell, R. H. Kimberlites (Plenum, New York, 1986)

    Book  Google Scholar 

  4. 4

    Dawson, J. Advances in kimberlite geology. Earth Sci. Rev. 7, 187–214 (1971)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hawthorne, J. Model of a kimberlite pipe. Phys. Chem. Earth 9, 1–15 (1975)

    Article  Google Scholar 

  6. 6

    Clement, C. R. & Reid, A. M. in Fourth Int. Conf. on Kimberlites and Related Rocks Vol. 14 632–646 (Geological Society of Australia, Perth, 1989)

    Google Scholar 

  7. 7

    Mannard, G. The surface expression of kimberlite pipes. Proc. Geol. Assoc. Canada 19, 15–21 (1968)

    CAS  Google Scholar 

  8. 8

    Wohletz, K. & Sheridan, M. Hydrovolcanic explosions: II, Evolution of basalts tuff rings and tuff cones. Am. J. Sci. 283, 385–413 (1983)

    ADS  Article  Google Scholar 

  9. 9

    Wagner, P. A. The Diamond Fields of Southern Africa 1–355 (The Transvaal Leader, Johannesburg, 1914)

    Google Scholar 

  10. 10

    Kostrovitsky, S. I. Physical Conditions, Hydraulics and Kinematics of Emplacement of Kimberlite Pipes 1–95 (Nauka, Novosibirsk, 1976)

    Google Scholar 

  11. 11

    Reynolds, D. L. Fluidization as a geological process and its bearing on the problem of intrusive granites. Am. J. Sci. 255, 577–613 (1954)

    ADS  Article  Google Scholar 

  12. 12

    McGetchin, T. R. & Ulrich, G. W. Xenoliths in maars and diatremes with inferences for the Moon, Mars, and Venus. J. Geophys. Res. 78, 1833–1853 (1973)

    ADS  Article  Google Scholar 

  13. 13

    McGetchin, T. R., Nikhanj, Y. S. & Chodos, A. A. Carbonatite-kimberlite relations in the Cane Valley diatreme, San Juan County, Utah. J. Geophys. Res. 78, 1854–1869 (1973)

    ADS  Article  Google Scholar 

  14. 14

    Wyllie, P. J. The origin of kimberlite. J. Geophys. Res. 85, 6902–6910 (1980)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Skinner, E. & Marsh, J. Distinct kimberlite pipe classes with contrasting eruption processes. Lithos 76, 183–200 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lorenz, V. in Physics and Chemistry of the Earth Vol. 9 17–27 (Pergamon Press, Oxford, 1975)

    Book  Google Scholar 

  17. 17

    Lorenz, V., Zimanowski, B., Buttner, R. & Kurszlaukis, S. in Proc. VII Int. Kimberlite Conf. (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) Vol. 2 522–528 (Red Roof Design, Cape Town, 1999)

  18. 18

    Wolfe, J. A. Fluidization versus phreatomagmatic explosions in breccia pipes. Econ. Geol. 75, 1105–1111 (1980)

    Article  Google Scholar 

  19. 19

    Clement, C. R. The origin and infilling of kimberlite pipes. In Extended Abstracts, Kimberlite Symposium II, Cambridge (Geology Dept, DeBeers Consolidated Mines Ltd, 1979)

    Google Scholar 

  20. 20

    Clement, C. R. A Comparative Geological Study of Some Major Kimberlite Pipes in the Northern Cape and Orange Free State. PhD thesis, Univ. Cape Town. (1982)

  21. 21

    Green, H. W. & Gueguen, Y. Origin of kimberlite pipes by diapiric upwelling in the upper mantle. Nature 249, 617–620 (1974)

    ADS  Article  Google Scholar 

  22. 22

    Kramers, J. D., Smith, C. B. & Lock, N. P. Harmon. R. S. . Boyd, F. R. Can kimberlites be generated from an ordinary mantle? Nature 291, 53–56 (1981)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Wyllie, P. in Proc. 2nd Int. Kimberlite Conf. (eds Meyer, H. and Boyd, F. R.) Vol. 1 319–329 (AGU, Washington DC, 1979)

  24. 24

    Wyllie, P. & Ryabchikov, I. D. Volatile components, magmas, and critical fluids in upwelling mantle. J. Petrol. 41, 1195–1206 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Anderson, O. L. in Proc. 2nd Int. Kimberlite Conf. (eds Meyer, H. and Boyd, F. R.) Vol. 1 344–353 (AGU, Washington DC, 1979)

  26. 26

    Sleep, N. H. Tapping of melt by veins and dikes. J. Geophys. Res. 93, 10255–10272 (1988)

    ADS  Article  Google Scholar 

  27. 27

    Lister, J. R. Buoyancy-driven fluid fracture: The effects of material toughness and of low-viscosity precursors. J. Fluid Mech. 210, 263–280 (1990)

    ADS  Article  Google Scholar 

  28. 28

    Rubin, A. M. Dikes vs. diapirs in viscoelastic rock. Earth Planet. Sci. Lett. 119, 641–659 (1993)

    ADS  Article  Google Scholar 

  29. 29

    Wyllie, P. J. & Huang, W. L. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature 257, 297–299 (1975)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wilson, L. & Head, J. W. Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophys. Res. Lett. 30 doi: 10.1029/2002GL016082 (2003)

  31. 31

    Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Explosive volcanic eruptions—IV. The control of magma chamber and conduit geometry on eruption column behavior. Geophys. J. R. Astron. Soc. 63, 117–148 (1980)

    ADS  Article  Google Scholar 

  32. 32

    Lister, J. R. Buoyancy-driven fluid fracture: Similarity solutions for the horizontal and vertical propagation of fluid-filled cracks. J. Fluid Mech. 217, 213–239 (1990)

    ADS  Article  Google Scholar 

  33. 33

    Hess, P. Origins of Igneous Rocks 1–336 (Harvard Univ. Press, Cambridge, Massachusetts, 1989)

    Google Scholar 

  34. 34

    Kieffer, S. W. Blast dynamics at Mount St. Helens on 18 May 1980. Nature 291, 568–570 (1981)

    ADS  Article  Google Scholar 

  35. 35

    Wilson, L. & Head, J. W. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86, 2971–3001 (1981)

    ADS  Article  Google Scholar 

  36. 36

    Canil, D. & Fedortchouk, Y. Garnet dissolution and the emplacement of kimberlites. Earth Planet. Sci. Lett. 167, 227–237 (1999)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Kieffer, S. W. Sound speed in liquid-gas mixtures: Water-air and water-steam. J. Geophys. Res. 82, 2895–2904 (1977)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Aeronautics and Space Administration to J.W.H.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James W. Head III.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, L., Head III, J. An integrated model of kimberlite ascent and eruption. Nature 447, 53–57 (2007). https://doi.org/10.1038/nature05692

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing