Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantum scattering interferometer


The collision of two ultracold atoms results in a quantum mechanical superposition of the two possible outcomes: each atom continues without scattering, and each atom scatters as an outgoing spherical wave with an s-wave phase shift. The magnitude of the s-wave phase shift depends very sensitively on the interaction between the atoms. Quantum scattering and the underlying phase shifts are vitally important in many areas of contemporary atomic physics, including Bose–Einstein condensates1,2,3,4,5, degenerate Fermi gases6,7,8,9, frequency shifts in atomic clocks10,11,12 and magnetically tuned Feshbach resonances13. Precise experimental measurements of quantum scattering phase shifts have not been possible because the number of scattered atoms depends on the s-wave phase shifts as well as the atomic density, which cannot be measured precisely. Here we demonstrate a scattering experiment in which the quantum scattering phase shifts of individual atoms are detected using a novel atom interferometer. By performing an atomic clock measurement using only the scattered part of each atom’s wavefunction, we precisely measure the difference of the s-wave phase shifts for the two clock states in a density-independent manner. Our method will enable direct and precise measurements of ultracold atom–atom interactions, and may be used to place stringent limits on the time variations of fundamental constants14.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Diagram of the experiment.
Figure 2: Ramsey fringes for scattered and unscattered atoms.
Figure 3: Velocity distribution of clock atoms.
Figure 4: The s -wave phase shift of scattered atoms.


  1. 1

    Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Widera, A. et al. Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. New J. Phys. 8, 152 (2006)

    ADS  Article  Google Scholar 

  6. 6

    DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)

    CAS  Article  Google Scholar 

  7. 7

    Modugno, G. et al. Collapse of a degenerate Fermi gas. Science 297, 2240–2243 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    O’Hara, K. M., Hemmer, S. L., Gehm, M. E., Granade, S. R. & Thomas, J. E. Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298, 2179–2182 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Gupta, S. et al. Radio-frequency spectroscopy of ultracold fermions. Science 300, 1723–1726 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gibble, K. & Chu, S. Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions. Phys. Rev. Lett. 70, 1771–1774 (1993)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fertig, C. & Gibble, K. Measurement and cancellation of the cold collision shift in an 87Rb fountain clock. Phys. Rev. Lett. 85, 1622–1625 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Wynands, R. & Weyers, S. Atomic fountain clocks. Metrologia 42, S64–S79 (2005)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Chin, C. & Flambaum, V. V. Enhanced sensitivity to fundamental constants in ultracold atomic and molecular systems near Feshbach resonances. Phys. Rev. Lett. 96, 230801 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Legere, R. & Gibble, K. Quantum scattering in a juggling atomic fountain. Phys. Rev. Lett. 81, 5780–5783 (1998)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kasevich, M. et al. Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 66, 2297–2300 (1991)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Gibble, K., Chang, S. & Legere, R. Direct observation of s-wave atomic collisions. Phys. Rev. Lett. 75, 2666–2669 (1995)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Legere, R. J. Quantum Scattering in a Juggling Atomic Fountain. PhD thesis, Yale Univ. (1999)

  19. 19

    Kokkelmans, S. J. J. M. F. Interacting Atoms in Clocks and Condensates. PhD thesis, Univ. Eindhoven. (2000)

  20. 20

    Monroe, C. R., Cornell, E. A., Sackett, C. A., Myatt, C. J. & Wieman, C. E. Measurement of Cs-Cs elastic scattering at T = 30 μK. Phys. Rev. Lett. 70, 414–417 (1993)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Ensher, J. R., Jin, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Bose-Einstein condensation in a dilute gas: Measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984–4987 (1996)

    ADS  CAS  Article  Google Scholar 

  23. 23

    DePue, M. T., McCormick, C., Winoto, S. L., Oliver, S. & Weiss, D. S. Unity occupation of sites in a 3D optical lattice. Phys. Rev. Lett. 82, 2262–2265 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Chin, C., Vuletic, V., Kerman, A. J. & Chu, S. High resolution Feshbach spectroscopy of cesium. Phys. Rev. Lett. 85, 2717–2720 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Chin, C. et al. Precision Feshbach spectroscopy of ultracold Cs2 . Phys. Rev. A 70, 032701 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Thomas, N. R., Kjærgaard, N., Julienne, P. S. & Wilson, A. C. Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms. Phys. Rev. Lett. 93, 173201 (2004)

    ADS  Article  Google Scholar 

  27. 27

    Buggle, Léonard, J., von Klitzing, W. & Walraven, J. T. M. Interferometric determination of the s and d-wave scattering amplitudes in 87Rb. Phys. Rev. Lett. 93, 173202 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Treutlein, P., Chung, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Phys. Rev. A 63, 051401(R) (2001)

    ADS  Article  Google Scholar 

  30. 30

    Levitt, M. H. Composite pulses. Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986)

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge discussions with B. Verhaar and S. Kokkelmans and contributions from R. Li. This work was supported by NASA, NSF, ONR and Penn State University.

Author information



Corresponding author

Correspondence to Kurt Gibble.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hart, R., Xu, X., Legere, R. et al. A quantum scattering interferometer. Nature 446, 892–895 (2007).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing