Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone

Abstract

Insects, like many other animals, use sex pheromones to coordinate their reproductive behaviours1. Volatile pheromones are detected by odorant receptors expressed in olfactory receptor neurons (ORNs). Whereas fruit odours typically activate multiple ORN classes2, pheromones are thought to act through single dedicated classes of ORN3. This model predicts that activation of such an ORN class should be sufficient to trigger the appropriate behavioural response. Here we show that the Drosophila melanogaster male-specific pheromone 11-cis-vaccenyl acetate (cVA) acts through the receptor Or67d to regulate both male and female mating behaviour. Mutant males that lack Or67d inappropriately court other males, whereas mutant females are less receptive to courting males. These data suggest that cVA has opposite effects in the two sexes: inhibiting mating behaviour in males but promoting mating behaviour in females. Replacing Or67d with moth pheromone receptors renders these ORNs sensitive to the corresponding moth pheromones. In such flies, moth pheromones elicit behavioural responses that mimic the normal response to cVA. Thus, activation of a single ORN class is both necessary and sufficient to mediate behavioural responses to the Drosophila sex pheromone cVA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Or67d mediates physiological responses to cVA.
Figure 2: Or67d functions in male and female mating behaviours.
Figure 3: Or67d mediates cVA-induced courtship suppression.
Figure 4: Artificial activation of Or67d ORNs mimics cVA responses.

Similar content being viewed by others

References

  1. Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005)

    Article  CAS  Google Scholar 

  2. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004)

    Article  CAS  Google Scholar 

  3. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997)

    Article  CAS  Google Scholar 

  4. Kondoh, Y., Kaneshiro, K. Y., Kimura, K. & Yamamoto, D. Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proc. R. Soc. Lond. B 270, 1005–1013 (2003)

    Article  Google Scholar 

  5. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005)

    Article  CAS  Google Scholar 

  6. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)

    Article  CAS  Google Scholar 

  7. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    Article  CAS  Google Scholar 

  8. Rong, Y. S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581 (2002)

    Article  CAS  Google Scholar 

  9. Clyne, P., Grant, A., O’Connell, R. & Carlson, J. R. Odorant response of individual sensilla on the Drosophila antenna. Invertebr. Neurosci. 3, 127–135 (1997)

    Article  CAS  Google Scholar 

  10. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006)

    Article  CAS  Google Scholar 

  11. Mane, S. D., Tompkins, L. & Richmond, R. C. Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster females. Science 222, 419–421 (1983)

    Article  ADS  CAS  Google Scholar 

  12. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999)

    Article  CAS  Google Scholar 

  13. Zou, Z. & Buck, L. B. Combinatorial effects of odorant mixes in olfactory cortex. Science 311, 1477–1481 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Broome, B. M., Jayaraman, V. & Laurent, G. Encoding and decoding of overlapping odor sequences. Neuron 51, 467–482 (2006)

    Article  CAS  Google Scholar 

  15. Butenandt, A., Beckmann, R., Stamm, D. & Hecker, E. Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch. 14b, 283–284 (1959)

    Google Scholar 

  16. Roelofs, W. L., Hill, A. S., Carde, R. T. & Baker, T. C. Two sex pheromone components of the tobacco budworm moth, Heliothis virescens. Life Sci. 14, 1555–1562 (1974)

    Article  CAS  Google Scholar 

  17. Sakurai, T. et al. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl Acad. Sci. USA 101, 16653–16658 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638–1642 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Krieger, J., Grosse-Wilde, E., Gohl, T. & Breer, H. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci. 21, 2167–2176 (2005)

    Article  Google Scholar 

  20. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D. A. & Leal, W. S. Pheromone reception in fruit flies expressing a moth’s odorant receptor. Proc. Natl Acad. Sci. USA 103, 16538–16543 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Krieger, J. et al. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl Acad. Sci. USA 101, 11845–11850 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  CAS  Google Scholar 

  23. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  CAS  Google Scholar 

  24. Jefferis, G. S. X. E. et al. Comprehensive maps of Drosophila higher olfactory centres: spatially segregated fruit and pheromone representation. Cell (in the press). (2007)

  25. Schurmann, F. W. Acetylcholine, GABA, glutamate and NO as putative transmitters indicated by immunocytochemistry in the olfactory mushroom body system of the insect brain. Acta Biol. Hung. 51, 355–362 (2000)

    CAS  PubMed  Google Scholar 

  26. Yasuyama, K., Meinertzhagen, I. A. & Schurmann, F. W. Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogaster. J. Comp. Neurol. 466, 299–315 (2003)

    Article  Google Scholar 

  27. Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005)

    Article  CAS  Google Scholar 

  28. de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001)

    Article  CAS  Google Scholar 

  29. Rollmann, S. M., Mackay, T. F. & Anholt, R. R. Pinocchio, a novel protein expressed in the antenna, contributes to olfactory behavior in Drosophila melanogaster. J. Neurobiol. 63, 146–158 (2005)

    Article  CAS  Google Scholar 

  30. Demir, E. & Dickson, B. J. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Couto and M. Alenius for the initial identification of Or67d expression in the T1 ORNs and for the images in Fig. 1b, c; K. Golic for targeting stocks; Y. Banno for the Bombyx mori genomic DNA; J. Krieger for the HR13 cDNA and the supply of bombykol used in our initial experiments; R. Fuchs and Azra Kurtovic for technical assistance; G. Jefferis, A. Keene and M. Leyssen for comments on the manuscript; and G. Jefferis and L. Luo for communicating unpublished data. A.W. was supported in part by a postdoctoral fellowship from the Swiss National Science Foundation. This work was funded by Boehringer Ingelheim GmbH.

Author Contributions A.K. and B.J.D. generated the Or67d knock-in alleles. A.K. performed the behavioural analysis with assistance from A.W., who also carried out all the electrophysiological experiments. All three authors contributed to the experimental design and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Dickson.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Supplementary Figures S1-S2 with Legends (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtovic, A., Widmer, A. & Dickson, B. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007). https://doi.org/10.1038/nature05672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05672

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing