Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progress and opportunities for tissue-engineered skin

Abstract

Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The structure of human skin.
Figure 2: An example of the clinical use of tissue-engineered skin.
Figure 3: Reconstruction of tissue-engineered skin using a synthetic scaffold.
Figure 4: Examples of laboratory uses of tissue-engineered skin.

References

  1. Herndon, D. N. et al. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann. Surg. 209, 547–552 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Burn Incidence and Treatment in the United States: 1999 Fact Sheet (The Burn Foundation, Philadelphia, 1999).

  3. Rose, J. K. & Herndon, D. N. Advances in the treatment of burn patients. Burns 23 (suppl. 1), S19–S26 (1997).

    PubMed  Google Scholar 

  4. Falanga, V. Chronic wounds: pathophysiologic and experimental considerations. J. Invest. Dermatol. 100, 721–725 (1993).

    CAS  PubMed  Google Scholar 

  5. Phillips, T., Stanton, B., Provan, A. & Lew, R. A study of the impact of leg ulcers on quality of life: financial, social, and psychologic implications. J. Am. Acad. Dermatol. 31, 49–53 (1994).

    CAS  PubMed  Google Scholar 

  6. Bittencourt, F. V. et al. Large congenital melanocytic nevi and the risk of development of malignant melanoma and neurocutaneous melanocytosis. Pediatrics 106, 736–741 (2000).

    CAS  PubMed  Google Scholar 

  7. Cooper, M. L., Spielvogel, R. L., Hansbrough, J. F., Boyce, S. T. & Frank, D. H. Reconstitution of the histologic characteristics of a giant congenital nevomelanocytic nevus employing the athymic mouse and a cultured skin substitute. J. Invest. Dermatol. 97, 649–658 (1991).

    CAS  PubMed  Google Scholar 

  8. Gallico, G. G. et al. Cultured epithelial autografts for giant congenital nevi. Plast. Reconstr. Surg. 84, 1–9 (1989).

    PubMed  Google Scholar 

  9. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).

    CAS  Google Scholar 

  10. Rheinwald, J. G. & Green, H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265, 421–424 (1977)

    ADS  CAS  PubMed  Google Scholar 

  11. Green, H., Kehinde, O. & Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl Acad. Sci. USA 76, 5665–5668 (1979).

    ADS  CAS  PubMed  Google Scholar 

  12. O'Connor, N. E., Mulliken, J. B., Banks-Schlegel, S., Kehinde, O. & Green, H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet i, 75–78 (1981).

    Google Scholar 

  13. Gallico, G. G., O'Connor, N. E., Compton, C. C., Kehinde, O. & Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. New Engl J. Med. 311, 448–451 (1984).

    PubMed  Google Scholar 

  14. Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987).

    ADS  CAS  PubMed  Google Scholar 

  15. Fuchs, E. Epidermal differentiation: the bare essentials. J. Cell Biol. 111, 2807–2814 (1990).

    CAS  PubMed  Google Scholar 

  16. Gambardella, L. & Barrandon, Y. The multifaceted adult epidermal stem cell. Curr. Opin. Cell Biol. 15, 771–777 (2003).

    CAS  PubMed  Google Scholar 

  17. Cuono, C., Langdon, R. & McGuire, J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet i, 1123–1124 (1986).

    Google Scholar 

  18. Herndon, D. N. & Parks, D. H. Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J. Trauma 26, 149–152 (1986).

    CAS  PubMed  Google Scholar 

  19. Burke, J. F., Yannas, I. V., Quinby, W. C., Bondoc, C. C. & Jung, W. K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 194, 413–428 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, Q., Dawson, R. A., Pegg, D. E., Kearney, J. N. & MacNeil, S. Use of peracetic acid to sterilise human donor skin for production of acellular matrices for clinical use. Wound Repair Regen. 12, 276–287 (2004).

    PubMed  Google Scholar 

  21. Stern, R., McPherson, M. & Longaker, M. T. Histologic study of artificial skin used in the treatment of full thickness thermal injury. J. Burn Care Rehabil. 11, 7–13 (1990).

    CAS  PubMed  Google Scholar 

  22. Boyce, S. T. et al. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 222, 743–752 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Boyce, S. T. et al. The 1999 Clinical Research Award. Cultured skin substitutes combined with Integra artificial skin to replace native skin autograft and allograft for closure of full-thickness burns. J. Burn Care Rehabil. 20, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  24. Boyce, S. T. et al. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 235, 269–279 (2002).

    PubMed  PubMed Central  Google Scholar 

  25. Supp, D. M. & Boyce, S. T. Engineered skin substitutes: practices and potentials. Clin. Dermatol. 23, 403–412 (2005).

    PubMed  Google Scholar 

  26. Iuchi, S., Dabelsteen, S., Easley, K., Rheinwald, J. G. & Green, H. Immortalized keratinocyte lines derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 1792–1797 (2006).

    ADS  CAS  PubMed  Google Scholar 

  27. McPherson, T. B. et al. Galα(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng. 6, 233–239 (2000).

    CAS  PubMed  Google Scholar 

  28. Marston, W. A., Hanft, J., Norwood, P. & Pollak, R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26, 1701–1705 (2003).

    PubMed  Google Scholar 

  29. Kumar, R. J., Kimble, R. M., Boots, R. & Pegg, S. P. Treatment of partial-thickness burns: a prospective randomized trial using Transcyte™. ANZ J. Surg. 74, 622–626 (2004).

    PubMed  Google Scholar 

  30. Bello, Y. M. & Falabella, A. F. The role of Graftskin (Apligraf®) in difficult-to-heal venous leg ulcers. J. Wound Care 11, 182–183 (2003).

    Google Scholar 

  31. Lipkin, S., Chaikof, E., Isseroff, Z. & Silverstein, P. Effectiveness of bilayered cellular matrix in healing of neuropathic diabetic foot ulcers: results of a multicenter pilot trial. Wounds 15, 230–236 (2003).

    Google Scholar 

  32. Carver, N., Navsaria, H., Green, C. J. & Leigh, I. M. Acute rejection of cultured keratinocyte allografts in nonimmunosuppressed pigs. Transplantation 52, 918–921 (1991).

    CAS  PubMed  Google Scholar 

  33. Brain, A. et al. Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome. Br. Med. J. 298, 917–919 (1989).

    CAS  Google Scholar 

  34. Hermans, M. H. Clinical experience with glycerol-preserved donor skin treatment in partial thickness burns. Burns Incl. Therm. Inj. 15, 57–59 (1989).

    CAS  PubMed  Google Scholar 

  35. Wainwright, D. et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J. Burn Care Rehabil. 17, 124–136 (1996).

    CAS  PubMed  Google Scholar 

  36. Jarman-Smith, M. L. et al. Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J. Mater. Sci. Mater. Med. 15, 925–932 (2004).

    CAS  PubMed  Google Scholar 

  37. Boyce, S. T. et al. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J. Trauma 60, 821–829 (2006).

    PubMed  Google Scholar 

  38. Ralston, D. R. et al. The requirement for basement membrane antigens in the production of human epidermal/dermal composites in vitro. Br. J. Dermatol. 140, 605–615 (1999).

    CAS  PubMed  Google Scholar 

  39. Sahota, P. S. et al. Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen. 11, 275–284 (2003).

    PubMed  Google Scholar 

  40. Medalie, D. A. et al. Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane and rete ridge formation of transplanted composite skin grafts. Transplantation 64, 454–465 (1997).

    CAS  PubMed  Google Scholar 

  41. Swope, V. B., Supp, A. P., Schwemberger, S., Babcock, G. & Boyce, S. Increased expression of integrins and decreased apoptosis correlate with increased melanocyte retention in cultured skin substitutes. Pigment Cell Res. 19, 424–433 (2006).

    CAS  PubMed  Google Scholar 

  42. Ratner, B. D. & Bryant, S. J. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004).

    CAS  PubMed  Google Scholar 

  43. Wright, K. A. et al. Alternative delivery of keratinocytes using a polyurethane membrane and the implications for its use in the treatment of full-thickness burn injury. Burns 24, 7–17 (1998).

    CAS  PubMed  Google Scholar 

  44. Horch, R. E., Bannasch, H. & Stark, G. B. Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds. Transplant Proc. 33, 642–644 (2001).

    CAS  PubMed  Google Scholar 

  45. Navarro, F. A. et al. Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J. Burn Care Rehabil. 21, 513–518 (2000).

    CAS  PubMed  Google Scholar 

  46. Horch, R. E., Debus, M., Wagner, G. & Stark, G. B. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng. 6, 53–67 (2000).

    CAS  PubMed  Google Scholar 

  47. Haddow, D. B. et al. Plasma-polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound-bed model. J. Biomed. Mater. Res. A 64, 80–87 (2003).

    CAS  PubMed  Google Scholar 

  48. Tausche, A. K. et al. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratincoytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen. 11, 248–252 (2003).

    PubMed  Google Scholar 

  49. Currie, L. J., Martin, R., Sharpe, J. R. & James, S. E. A comparison of keratinocyte cell sprays with and without fibrin glue. Burns 29, 677–685 (2003).

    PubMed  Google Scholar 

  50. Hernon, C. A. et al. Clinical experience using cultured epithelial autografts lead to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen. Med. 1, 809–821 (2006).

    PubMed  Google Scholar 

  51. Moustafa, M. et al. A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabet. Med. 21, 786–789 (2004).

    Google Scholar 

  52. Zhu, N. et al. Treatment of burns and chronic wounds using a new cell transfer dressing for delivery of autologous keratinocytes. Eur. J. Plast. Surg. 28, 319–330 (2005).

    Google Scholar 

  53. France, R. M., Short, R. D., Dawson, R. A. & MacNeil, S. Attachment of human keratinocytes to plasma co-polymers of acrylic acid/octa-1,7-diene and allyl amine/octa-1,7-diene. J. Mater. Chem. 8, 37–42 (1998).

    CAS  Google Scholar 

  54. De Luca, M. et al. Multicentre experience in the treatment of burns with autologous and allogeneic cultured epithelium, fresh or preserved in a frozen state. Burns 15, 303–309 (1989).

    CAS  PubMed  Google Scholar 

  55. Sun, T. et al. Self-organisation of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng. 11, 1023–1033 (2005).

    CAS  PubMed  Google Scholar 

  56. Sun, T., Jackson, S., Haycock, J. W. & MacNeil, S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J. Biotechnol. 122, 372–381 (2006).

    CAS  PubMed  Google Scholar 

  57. Sauer, U. G., Spielmann, H. & Rusche, B. Fourth EU report on the statistics on the number of animals used for scientific purposes in 2002 — trends, problems, conclusions. ALTEX 22, 59–67 (2002).

    Google Scholar 

  58. Facy, V., Flouret, V., Regnier, M. & Schmidt, R. Reactivity of Langerhans cells in human reconstructed epidermis to known allergens and UV radiation. Toxicol. In Vitro 19, 787–795 (2005).

    CAS  PubMed  Google Scholar 

  59. Welss, T., Basketter, D. A. & Schroder, K. R. In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol. In Vitro 18, 231–243 (2004).

    CAS  PubMed  Google Scholar 

  60. Netzlaff, F., Lehr, C. M., Wertz, P. W. & Schaefer, U. F. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 60, 167–178 (2005).

    CAS  PubMed  Google Scholar 

  61. Kandarova, H. et al. Assessment of the skin irritation potential of chemicals by using the SkinEthic reconstructed human epidermal model and the common skin irritation protocol evaluated in the ECVAM skin irritation validation study. Altern. Lab. Anim. 34, 393–406 (2006).

    CAS  PubMed  Google Scholar 

  62. Bessou, S. et al. Ex vivo study of skin phototypes. J. Invest. Dermatol. 107, 684–688 (1996).

    CAS  PubMed  Google Scholar 

  63. Hedley, S. J. et al. Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from skin types I and II. Pigment Cell Res. 15, 49–56 (2002).

    PubMed  Google Scholar 

  64. Cario-Andre, M., Pain, C., Gauthier, Y., Casoli, V. & Taieb, A. In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment Cell Res. 19, 434–442 (2006).

    PubMed  Google Scholar 

  65. Meier, F., Nesbit, M. & Hsu, M.-Y. Human melanoma progression in skin reconstructs: biological significance of bFGF. Am. J. Pathol. 156, 193–200 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eves, P. et al. Characterization of an in vitro model of human melanoma invasion based on reconstructed human skin. Br. J. Dermatol. 142, 210–222 (2003).

    Google Scholar 

  67. Eves, P. et al. Melanoma invasion in reconstructed human skin is influenced by skin cells — investigation of the role of proteolytic enzymes. Clin. Exp. Metastasis 20, 685–700 (2003).

    CAS  PubMed  Google Scholar 

  68. Eves, P. et al. Anti-inflammatory and anti-invasive effects of alpha-melanocyte-stimulating hormone in human melanoma cells. Br. J. Cancer 89, 2004–2015 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ralston, D. R. et al. Keratinocytes contract normal human dermal extracellular matrix and reduce soluble fibronectin production by fibroblasts in a skin composite model. Br. J. Plast. Surg. 50, 408–415 (1997).

    CAS  PubMed  Google Scholar 

  70. Chakrabarty, K. H. et al. Keratinocyte-driven contraction of reconstructed human skin. Wound Repair Regen. 9, 95–106 (2001).

    CAS  PubMed  Google Scholar 

  71. Harrison, C. A. et al. Use of an in vitro model of tissue-engineered human skin to investigate the mechanism of skin graft contraction. Tissue Eng. 1 Oct 2006 [Epub ahead of print].

  72. Souren, J. M., Ponec, M. & Van Wijk, R. Contraction of collagen by human fibroblasts and keratinocytes. In Vitro Cell Dev. Biol. 25, 1039–1045 (1989).

    CAS  PubMed  Google Scholar 

  73. Grinnell, F. Fibroblasts, myofIbroblasts and wound contraction. J. Cell Biol. 124, 401–404 (1994).

    CAS  PubMed  Google Scholar 

  74. Barker, C. L. et al. The development and characterization of an in vitro model of psoriasis. J. Invest. Dermatol. 123, 892–901 (2004).

    CAS  PubMed  Google Scholar 

  75. Ferrari, S., Pellegrini, G., Matsui, T., Mavilio, F. & De Luca, M. Gene therapy in combination with tissue engineering to treat epidermolysis bullosa. Expert Opin. Biol. Ther. 6, 367–378 (2006).

    CAS  PubMed  Google Scholar 

  76. Shah, M. et al. Role of elevated plasma transforming growth factor β1 levels in wound healing. Am. J. Pathol. 154, 1115–1124 (1989)

    Google Scholar 

  77. O'Kane, S. & Ferguson, M. W. Transforming growth factor βs and wound healing. Int. J. Biochem. Cell Biol. 29, 63–78 (1997).

    CAS  PubMed  Google Scholar 

  78. Ferguson, M. W. & O'Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil. Trans. R. Soc. Lond. B 359, 839–850 (2004).

    CAS  Google Scholar 

  79. Shier, D., Butler, J. & Lewis, R. in Hole's Human Anatomy and Physiology 8th Edn 160–183 (McGraw Hill, 1999).

    Google Scholar 

  80. Herndon, D. N. & Parks, D. H. Comparison of serial debridement and autografting and early massive excision with cadaver skin overlay in the treatment of large burns in children. J. Trauma 26, 149–152 (1986).

    CAS  PubMed  Google Scholar 

  81. Delvoye, P. et al. Fibroblasts induce the assembly of the macromolecules of the basement membrane. J. Invest. Dermatol. 90, 276–282 (1990).

    Google Scholar 

  82. Konig, A. & Brucker-Tuderman, L. Epithelial–mesenchymal interactions enhance expression of collagen VII in vitro. J. Invest. Dermatol. 96, 803–808 (1991).

    CAS  PubMed  Google Scholar 

  83. Demarchez, M., Hartmann, D. J., Regnier, M. & Asselineau, D. The role of fibroblasts in dermal vascularization and remodeling of reconstructed human skin after transplantation onto the nude mouse. Transplantation 54, 317–326 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author regrets that space restrictions preclude full reference to all those who have contributed to this field. Sheila MacNeil's research is supported by grants from EPSRC, BBSRC and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila MacNeil.

Ethics declarations

Competing interests

Sheila MacNeil is a director of CellTran, which has developed a wound-healing product known as Myskin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445, 874–880 (2007). https://doi.org/10.1038/nature05664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05664

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing