Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melanocyte biology and skin pigmentation

Abstract

Melanocytes are phenotypically prominent but histologically inconspicuous skin cells. They are responsible for the pigmentation of skin and hair, and thereby contribute to the appearance of skin and provide protection from damage by ultraviolet radiation. Pigmentation mutants in various species are highly informative about basic genetic and developmental pathways, and provide important clues to the processes of photoprotection, cancer predisposition and even human evolution. Skin is the most common site of cancer in humans. Continued understanding of melanocyte contributions to skin biology will hopefully provide new opportunities for the prevention and treatment of skin diseases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Vertebrate pigmentation.
Figure 2: The MITF promoter.
Figure 3: Labelled melanoblasts in DCT–lacZ mouse embryos.
Figure 4: DCT–lacZ melanoblasts in mouse hair follicles.

References

  1. Fitzpatrick, T. B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988).

    CAS  PubMed  Google Scholar 

  2. Ziegler, I. The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. Pigment Cell Res. 16, 172–182 (2003).

    CAS  PubMed  Google Scholar 

  3. Rees, J. L. Genetics of hair and skin color. Annu. Rev. Genet. 37, 67–90 (2003).

    CAS  PubMed  Google Scholar 

  4. Searle, A. G. An extension series in the mouse. J. Hered. 59, 341–342 (1968).

    CAS  PubMed  Google Scholar 

  5. Robbins, L. S. et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834 (1993).

    CAS  PubMed  Google Scholar 

  6. Everts, R. E., Rothuizen, J. & van Oost, B. A. Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1R) in labrador and golden retrievers with yellow coat colour. Anim. Genet. 31, 194–199 (2000).

    CAS  PubMed  Google Scholar 

  7. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    CAS  PubMed  Google Scholar 

  8. Mountjoy, K. G., Robbins, L. S., Mortrud, M. T. & Cone, R. D. The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251 (1992).

    ADS  CAS  PubMed  Google Scholar 

  9. Levy, C., Khaled, M. & Fisher, D. E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12, 406–414(2006).

    CAS  PubMed  Google Scholar 

  10. D'Orazio, J. A. et al. Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443, 340–344 (2006).

    ADS  CAS  PubMed  Google Scholar 

  11. Barsh, G., Gunn, T., He, L., Schlossman, S. & Duke-Cohan, J. Biochemical and genetic studies of pigment-type switching. Pigment Cell Res. 13 (Suppl. 8), 48–53 (2000).

    PubMed  Google Scholar 

  12. Furumura, M., Sakai, C., Abdel-Malek, Z., Barsh, G. S. & Hearing, V. J. The interaction of agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals. Pigment Cell Res. 9, 191–203 (1996).

    CAS  PubMed  Google Scholar 

  13. Kanetsky, P. A. et al. A polymorphism in the agouti signaling protein gene is associated with human pigmentation. Am. J. Hum. Genet. 70, 770–775 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rana, B. K. et al. High polymorphism at the human melanocortin 1 receptor locus. Genetics 151, 1547–1557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Healy, E. et al. Functional variation of MC1R alleles from red-haired individuals. Hum. Mol. Genet. 10, 2397–2402 (2001).

    CAS  PubMed  Google Scholar 

  16. Ringholm, A. et al. Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J. Invest. Dermatol. 123, 917–923 (2004).

    CAS  PubMed  Google Scholar 

  17. Naysmith, L. et al. Quantitative measures of the effect of the melanocortin 1 receptor on human pigmentary status. J. Invest. Dermatol. 122, 423–428 (2004).

    CAS  PubMed  Google Scholar 

  18. Harding, R. M. et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66, 1351–1361 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mogil, J. S. et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proc. Natl Acad. Sci. USA 100, 4867–4872 (2003).

    ADS  CAS  PubMed  Google Scholar 

  20. Lamason, R. L. et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786 (2005).

    ADS  CAS  PubMed  Google Scholar 

  21. Slominski, A., Tobin, D. J., Shibahara, S. & Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155–1228 (2004).

    CAS  PubMed  Google Scholar 

  22. Land, E. J. & Riley, P. A. Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Res. 13, 273–277 (2000).

    CAS  PubMed  Google Scholar 

  23. Oetting, W. S., Fryer, J. P., Shriram, S. & King, R. A. Oculocutaneous albinism type 1: the last 100 years. Pigment Cell Res. 16, 307–311 (2003).

    CAS  PubMed  Google Scholar 

  24. Wei, M. L. Hermansky–Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res. 19, 19–42 (2006).

    CAS  PubMed  Google Scholar 

  25. Boissy, R. E. Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 12 (Suppl. 2), 5–12 (2003).

    PubMed  Google Scholar 

  26. Heenen, M., Giacomoni, P. U. & Golstein, P. Individual variations in the correlation between erythemal threshold, UV-induced DNA damage and sun-burn cell formation. J. Photochem. Photobiol. B 63, 84–87 (2001).

    CAS  PubMed  Google Scholar 

  27. Tsatmali, M., Ancans, J., Yukitake, J. & Thody, A. J. Skin POMC peptides: their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Res. 13 (Suppl. 8), 125–129 (2000).

    PubMed  Google Scholar 

  28. Paus, R. et al. The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann. NY Acad. Sci. 885, 350–363 (1999).

    ADS  CAS  PubMed  Google Scholar 

  29. Schauer, E. et al. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93, 2258–2262 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 (1998).

    ADS  CAS  PubMed  Google Scholar 

  31. Eller, M. S., Yaar, M. & Gilchrest, B. A. DNA damage and melanogenesis. Nature 372, 413–414 (1994).

    ADS  CAS  PubMed  Google Scholar 

  32. Eller, M. S., Ostrom, K. & Gilchrest, B. A. DNA damage enhances melanogenesis. Proc. Natl Acad. Sci. USA 93, 1087–1092 (1996).

    ADS  CAS  PubMed  Google Scholar 

  33. Corre, S. et al. UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J. Biol. Chem. 279, 51226–51233 (2004).

    CAS  PubMed  Google Scholar 

  34. Smalley, K. & Eisen, T. The involvement of p38 mitogen-activated protein kinase in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and anti-proliferative effects in B16 murine melanoma cells. FEBS Lett. 476, 198–202 (2000).

    CAS  PubMed  Google Scholar 

  35. Ancans, J., Flanagan, N., Hoogduijn, M. J. & Thody, A. J. P-locus is a target for the melanogenic effects of MC-1R signaling: a possible control point for facultative pigmentation. Ann. NY Acad. Sci. 994, 373–377 (2003).

    ADS  CAS  PubMed  Google Scholar 

  36. Suzuki, K., Ojima, M., Kodama, S. & Watanabe, M. Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22, 6988–6993 (2003).

    CAS  PubMed  Google Scholar 

  37. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 773–776 (1994).

    ADS  CAS  PubMed  Google Scholar 

  38. Kamb, A. Sun protection factor p53. Nature 372, 730–731 (1994).

    ADS  CAS  PubMed  Google Scholar 

  39. Kaidbey, K. H., Agin, P. P., Sayre, R. M. & Kligman, A. M. Photoprotection by melanin — a comparison of black and Caucasian skin. J. Am. Acad. Dermatol. 1, 249–260 (1979).

    CAS  PubMed  Google Scholar 

  40. Kollias, N., Sayre, R. M., Zeise, L. & Chedekel, M. R. Photoprotection by melanin. J. Photochem. Photobiol. B 9, 135–160 (1991).

    CAS  PubMed  Google Scholar 

  41. Kennedy, C. et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol. 117, 294–300 (2001).

    CAS  PubMed  Google Scholar 

  42. Scott, M. C. et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J. Cell Sci. 115, 2349–2355 (2002).

    CAS  PubMed  Google Scholar 

  43. Hill, H. Z. & Hill, G. J. UVA, pheomelanin and the carcinogenesis of melanoma. Pigment Cell Res. 13 (Suppl. 8), 140–144 (2000).

    PubMed  Google Scholar 

  44. Takeuchi, S. et al. Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin. Proc. Natl Acad. Sci. USA 101, 15076–15081 (2004).

    ADS  CAS  PubMed  Google Scholar 

  45. Le Douarin, N. M., Creuzet, S., Couly, G. & Dupin, E. Neural crest cell plasticity and its limits. Development 131, 4637–4650 (2004).

    CAS  PubMed  Google Scholar 

  46. Mackenzie, M. A., Jordan, S. A., Budd, P. S. & Jackson, I. J. Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev. Biol. 192, 99–107 (1997).

    CAS  PubMed  Google Scholar 

  47. Price, E. R. & Fisher, D. E. Sensorineural deafness and pigmentation genes: melanocytes and the Mitf transcriptional network. Neuron 30, 15–18 (2001).

    CAS  PubMed  Google Scholar 

  48. Steingrimsson, E., Copeland, N. G. & Jenkins, N. A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365–411 (2004).

    CAS  PubMed  Google Scholar 

  49. Hershey, C. L. & Fisher, D. E. Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 34, 689–696 (2004).

    CAS  PubMed  Google Scholar 

  50. Chin, L., Garraway, L. A. & Fisher, D. E. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20, 2149–2182 (2006).

    CAS  PubMed  Google Scholar 

  51. Christiansen, J. H., Coles, E. G. & Wilkinson, D. G. Molecular control of neural crest formation, migration and differentiation. Curr. Opin. Cell Biol. 12, 719–724 (2000).

    CAS  PubMed  Google Scholar 

  52. Larue, L. & Delmas, V. The WNT/Beta-catenin pathway in melanoma. Front. Biosci. 11, 733–742 (2006).

    CAS  PubMed  Google Scholar 

  53. Lee, H. O., Levorse, J. M. & Shin, M. K. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev. Biol. 259, 162–175 (2003).

    CAS  PubMed  Google Scholar 

  54. Wehrle-Haller, B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 16, 287–296 (2003).

    CAS  PubMed  Google Scholar 

  55. Hemesath, T. J., Price, E. R., Takemoto, C., Badalian, T. & Fisher, D. E. MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391, 298–301 (1998).

    ADS  CAS  PubMed  Google Scholar 

  56. Ruan, H. B., Zhang, N. & Gao, X. Identification of a novel point mutation of mouse proto-oncogene c-kit through N-ethyl-N-nitrosourea mutagenesis. Genetics 169, 819–831 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Spritz, R. A. & Beighton, P. Piebaldism with deafness: molecular evidence for an expanded syndrome. Am. J. Med. Genet. 75, 101–103 (1998).

    CAS  PubMed  Google Scholar 

  58. Shears, D. et al. Molecular heterogeneity in two families with auditory pigmentary syndromes: the role of neuroimaging and genetic analysis in deafness. Clin. Genet. 65, 384–389 (2004).

    CAS  PubMed  Google Scholar 

  59. Steel, K. P., Davidson, D. R. & Jackson, I. J. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development 115, 1111–1119 (1992).

    CAS  PubMed  Google Scholar 

  60. Jordan, S. A. & Jackson, I. J. MGF (KIT ligand) is a chemokinetic factor for melanoblast migration into hair follicles. Dev. Biol. 225, 424–436 (2000).

    CAS  PubMed  Google Scholar 

  61. Legros, L., Cassuto, J. P. & Ortonne, J. P. Imatinib mesilate (Glivec): a systemic depigmenting agent for extensive vitiligo? Br. J. Dermatol. 153, 691–692 (2005).

    CAS  PubMed  Google Scholar 

  62. Perez-Losada, J. et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100, 1274–1286 (2002).

    CAS  PubMed  Google Scholar 

  63. Sanchez-Martin, M. et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am. J. Med. Genet. A 122, 125–132 (2003).

    Google Scholar 

  64. Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005).

    CAS  PubMed  Google Scholar 

  65. Imokawa, G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 17, 96–110 (2004).

    CAS  PubMed  Google Scholar 

  66. Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).

    CAS  PubMed  Google Scholar 

  67. Noonan, F. P. et al. Neonatal sunburn and melanoma in mice. Nature 413, 271–272 (2001).

    ADS  CAS  PubMed  Google Scholar 

  68. Nishimura, E. K., Yoshida, H., Kunisada, T. & Nishikawa, S. I. Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev. Biol. 215, 155–166 (1999).

    CAS  PubMed  Google Scholar 

  69. Fitch, K. R. et al. Genetics of dark skin in mice. Genes Dev. 17, 214–228 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Raamsdonk, C. D., Fitch, K. R., Fuchs, H., de Angelis, M. H. & Barsh, G. S. Effects of G-protein mutations on skin color. Nature Genet. 36, 961–968 (2004).

    CAS  PubMed  Google Scholar 

  71. Shin, M. K., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402, 496–501 (1999).

    ADS  CAS  PubMed  Google Scholar 

  72. Lerner, A. B. et al. A mouse model for vitiligo. J. Invest. Dermatol. 87, 299–304 (1986).

    CAS  PubMed  Google Scholar 

  73. McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718 (2002).

    CAS  PubMed  Google Scholar 

  74. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    CAS  PubMed  Google Scholar 

  75. Du, J. et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565–576 (2004).

    CAS  PubMed  Google Scholar 

  76. McGill, G. G., Haq, R., Nishimura, E. K. & Fisher, D. E. c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365–10373 (2006).

    CAS  PubMed  Google Scholar 

  77. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    ADS  CAS  PubMed  Google Scholar 

  78. Nishimura, E. K., Granter, S. R. & Fisher, D. E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    ADS  CAS  PubMed  Google Scholar 

  79. Mak, S. S., Moriyama, M., Nishioka, E., Osawa, M. & Nishikawa, S. Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev. Biol. 291, 144–153 (2006).

    CAS  PubMed  Google Scholar 

  80. Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113, 523–532 (1999).

    CAS  PubMed  Google Scholar 

  81. Tsao, A. S., Kantarjian, H., Cortes, J., O'Brien, S. & Talpaz, M. Imatinib mesylate causes hypopigmentation in the skin. Cancer 98, 2483–2487 (2003).

    PubMed  Google Scholar 

  82. Fukamachi, S., Shimada, A. & Shima, A. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nature Genet. 28, 381–385 (2001).

    CAS  PubMed  Google Scholar 

  83. Olson, E. The rub on sunscreen. New York Times, 19 June 2006.

  84. Wang, S. Q. et al. Ultraviolet A and melanoma: a review. J. Am. Acad. Dermatol. 44, 837–846 (2001).

    CAS  PubMed  Google Scholar 

  85. Berwick, M. et al. Sun exposure and mortality from melanoma. J. Natl Cancer Inst. 97, 195–199 (2005).

    PubMed  Google Scholar 

  86. Sollitto, R. B., Kraemer, K. H. & DiGiovanna, J. J. Normal vitamin D levels can be maintained despite rigorous photoprotection: six years' experience with xeroderma pigmentosum. J. Am. Acad. Dermatol. 37, 942–947 (1997).

    CAS  PubMed  Google Scholar 

  87. Weinstock, M. A., Stampfer, M. J., Lew, R. A., Willett, W. C. & Sober, A. J. Case-control study of melanoma and dietary vitamin D: implications for advocacy of sun protection and sunscreen use. J. Invest. Dermatol. 98, 809–811 (1992).

    CAS  PubMed  Google Scholar 

  88. Li, G., Tron, V. & Ho, V. Induction of squamous cell carcinoma in p53-deficient mice after ultraviolet irradiation. J. Invest. Dermatol. 110, 72–75 (1998).

    CAS  PubMed  Google Scholar 

  89. Green, A. et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 354, 723–729 (1999).

    CAS  PubMed  Google Scholar 

  90. Vainio, H., Miller, A. B. & Bianchini, F. An international evaluation of the cancer-preventive potential of sunscreens. Int. J. Cancer 88, 838–842 (2000).

    CAS  PubMed  Google Scholar 

  91. Gallagher, R. P. et al. Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. J. Am. Med. Assoc. 283, 2955–2960 (2000).

    CAS  Google Scholar 

  92. Pfahlberg, A. et al. Monitoring of nevus density in children as a method to detect shifts in melanoma risk in the population. Prev. Med. 38, 382–387 (2004).

    CAS  PubMed  Google Scholar 

  93. Dennis, L. K. et al. Constitutional factors and sun exposure in relation to nevi: a population-based cross-sectional study. Am. J. Epidemiol. 143, 248–256 (1996).

    CAS  PubMed  Google Scholar 

  94. Mones, J. M. & Ackerman, A. B. Melanomas in prepubescent children: review comprehensively, critique historically, criteria diagnostically, and course biologically. Am. J. Dermatopathol. 25, 223–238 (2003).

    PubMed  Google Scholar 

  95. Wolf, P., Quehenberger, F., Mullegger, R., Stranz, B. & Kerl, H. Phenotypic markers, sunlight-related factors and sunscreen use in patients with cutaneous melanoma: an Austrian case-control study. Melanoma Res. 8, 370–378 (1998).

    CAS  PubMed  Google Scholar 

  96. Autier, P. et al. Melanoma and use of sunscreens: an EORTC case-control study in Germany, Belgium and France. The EORTC Melanoma Cooperative Group. Int. J. Cancer 61, 749–755 (1995).

    CAS  PubMed  Google Scholar 

  97. Dennis, L. K., Beane Freeman, L. E. & VanBeek, M. J. Sunscreen use and the risk for melanoma: a quantitative review. Ann. Intern. Med. 139, 966–978 (2003).

    PubMed  Google Scholar 

  98. Huncharek, M. & Kupelnick, B. Use of topical sunscreens and the risk of malignant melanoma: a meta-analysis of 9067 patients from 11 case-control studies. Am. J. Public Health 92, 1173–1177 (2002).

    PubMed  PubMed Central  Google Scholar 

  99. Palmer, J. S. et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet. 66, 176–186 (2000).

    CAS  PubMed  Google Scholar 

  100. Wenczl, E. et al. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Invest. Dermatol. 111, 678–682 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. R. Granter, M. E. Bigby, H. A. Haynes, A. B. Kimball, J. Rees, A. J. Sober, R. Stern and H. Tsao for useful comments and discussions. This work was supported by grants from the NIH and Doris Duke Charitable Foundation, and a Ruth L. Kirschstein National Research Service Award (J.Y.L.). D.E.F. is Distinguished Clinical Investigator of the Doris Duke Charitable Foundation and Jan and Charles Nirenberg Fellow in Pediatric Oncology at the Dana-Farber Cancer Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

David Fisher discloses equity and consulting relationships with Magen Biosciences in Cambridge, Massachusetts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, J., Fisher, D. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007). https://doi.org/10.1038/nature05660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05660

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing