Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium


Although the nuclear properties of the late actinides (plutonium, americium and curium) are fully understood and widely applied to energy generation, their solid-state properties do not fit within standard models and are the subject of active research1. Plutonium displays phases with enormous volume differences, and both its Pauli-like magnetic susceptibility and resistivity are an order of magnitude larger than those of simple metals2. Curium is also highly resistive, but its susceptibility is Curie-like at high temperatures and orders antiferromagnetically3 at low temperatures. The anomalous properties of the late actinides stem from the competition between itinerancy and localization of their f-shell electrons, which makes these elements strongly correlated materials. A central problem in this field is to understand the mechanism by which these conflicting tendencies are resolved in such materials. Here we identify the electronic mechanisms responsible for the anomalous behaviour of late actinides, revisiting the concept of valence using a theoretical approach that treats magnetism, Kondo screening, atomic multiplet effects and crystal field splitting on the same footing. We find that the ground state in plutonium is a quantum superposition of two distinct atomic valences, whereas curium settles into a magnetically ordered single valence state at low temperatures. The f7 configuration of curium is contrasted with the multiple valences of the plutonium ground state, which we characterize by a valence histogram. The balance between the Kondo screening and magnetism is controlled by the competition between spin–orbit coupling, the strength of atomic multiplets and the degree of itinerancy. Our approach highlights the electronic origin of the bonding anomalies in plutonium, and can be applied to predict generalized valences and the presence or absence of magnetism in other compounds starting from first principles.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The spectral functions of δ-plutonium and face-centred-cubic curium.
Figure 2: Projection of the DMFT ground state to various atomic configurations.


  1. Lander, G. Sensing electrons on the edge. Science 301, 1057–1059 (2003)

    Article  CAS  Google Scholar 

  2. Lashley, J. C., Lawson, A., McQueeney, R. J. & Lander, G. H. Absence of magnetic moments in plutonium. Phys. Rev. B 72, 054416 (2005)

    Article  ADS  Google Scholar 

  3. Huray, P. G., Nave, S. E., Peterson, J. R. & Haire, R. G. The magnetic susceptibility of 248Cm metal. Physica B 102, 217–220 (1980)

    Article  CAS  Google Scholar 

  4. Brodsky, M. B. Magnetic properties of the actinide elements and their metallic compounds. Rep. Prog. Phys. 41, 1547–1608 (1978)

    Article  ADS  CAS  Google Scholar 

  5. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Werner, P., Comanac, A., de’ Medici, L., Troyer, M. & Millis, A. J. Continuous-time solver for quantum impurity models. Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

  8. Haule, K. Quantum Monte Carlo impurity solver for cluster DMFT and electronic structure calculations in adjustable base. Preprint at 〈〉 (2006)

  9. Savrasov, S. Y. Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. Phys. Rev. B 54, 16470–16486 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Savrasov, S. Y., Kotliar, G. & Abrahams, E. Correlated electrons in δ-plutonium within a dynamical mean-field picture. Nature 410, 793–795 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Cowan, R. D. The Theory of Atomic Structure and Spectra (Univ. California Press, Berkeley, 1981)

    Google Scholar 

  12. Savrasov, S. Y., Haule, K. & Kotliar, G. Many-body electronic structure of americium metal. Phys. Rev. Lett. 96, 036404 (2006)

    Article  ADS  Google Scholar 

  13. Lashley, J. C. et al. Experimental electronic heat capacities of α- and δ-plutonium: Heavy-fermion physics in an element. Phys. Rev. Lett. 91, 205901 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Varma, C. M. Mixed-valence compounds. Rev. Mod. Phys. 48, 219–238 (1976)

    Article  ADS  CAS  Google Scholar 

  15. Thole, B. T. & van der Laan, G. Linear relation between x-ray absorption branching ratio and valence-band spin-orbit expectation value. Phys. Rev. A 38, 1943–1947 (1988)

    Article  ADS  CAS  Google Scholar 

  16. van der Laan, G. et al. Applicability of the spin-orbit sum rule for the actinides 5f states. Phys. Rev. Lett. 93, 097401 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Moore, K. T., van der Laan, G., Haire, R. G., Wall, M. A. & Schwartz, A. J. Oxidation and aging in U and Pu probed by spin-orbit sum rule analysis: Indications for covalent metal-oxide bonds. Phys. Rev. B 73, 033109 (2006)

    Article  ADS  Google Scholar 

  18. Moore, K. T. et al. Failure of Russell-Saunders coupling in the 5f states of plutonium. Phys. Rev. Lett. 90, 196404 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Solovyev, I. V., Liechtenstein, A. I., Gubanov, V. A., Antropov, V. P. & Andersen, O. K. Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium. Phys. Rev. B 43, 14414–14422 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Kanellakopulos, B., Blaise, A., Fournier, J. M. & Müeller, W. The magnetic susceptibility of americium and curium metal. Solid State Commun. 17, 713–715 (1975)

    Article  ADS  CAS  Google Scholar 

  21. Wills, J. M. et al. A novel electronic configuration of the 5f states in δ-plutonium as revealed by the photo-electron spectra. J. Electron Spectrosc. Relat. Phenom. 135, 163–166 (2004)

    Article  CAS  Google Scholar 

  22. Svane, A., Petit, L., Szotek, Z. & Temmerman, W. M. Self-interaction corrected local spin density theory of 5f electron localization in actinides. Preprint at 〈〉 (2006)

  23. Shorikov, A. O., Lukoyanov, A. V., Korotin, M. A. & Anisimov, V. I. Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds. Phys. Rev. B 72, 024458 (2005)

    Article  ADS  Google Scholar 

  24. Shick, A. B., Drchal, V. & Havela, L. Coulomb-U and magnetic-moment collapse in δ-Pu. Europhys. Lett. 69, 588–594 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Pourovskii, L. V. et al. Nature of non-magnetic strongly-correlated state in δ-plutonium. Europhys. Lett. 74, 479–485 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Tobin, J. G. et al. Competition between delocalization and spin-orbit splitting in the actinide 5f states. Phys. Rev. B 72, 085109 (2005)

    Article  ADS  Google Scholar 

  27. Gounder, T., Havela, L., Wastin, F. & Rebizant, J. Evidence for the 5f localisation in thin Pu layers. Europhys. Lett. 55, 705–711 (2001)

    Article  ADS  Google Scholar 

  28. Arko, A. J. et al. Electronic structure of α- and δ-Pu from photoelectron spectroscopy. Phys. Rev. B 62, 1773–1779 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Gouder, T., Eloirdi, R., Rebizant, J., Boulet, P. & Huber, F. Multiplet structure in Pu-based compounds: A photoemission case study of PuSix (0.5≤x≤2) films. Phys. Rev. B 71, 165101 (2005)

    Article  ADS  Google Scholar 

  30. Tobin, J. G. et al. Resonant photoemission in f-electron systems: Pu and Gd. Phys. Rev. B 68, 155109 (2003)

    Article  ADS  Google Scholar 

Download references


This work was supported by the Basic Energy Science division of the DOE. J.H.S. acknowledges a grant from the Korean Research Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Haule.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Equations

This file contains Supplementary Equations to explain the concept of generalized valence and how to extract valence of a solid within Dynamical Mean Field Theory. (PDF 68 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shim, J., Haule, K. & Kotliar, G. Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium. Nature 446, 513–516 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing