Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The molecular choreography of a store-operated calcium channel

Abstract

Store-operated calcium channels (SOCs) serve essential functions from secretion and motility to gene expression and cell growth. A fundamental mystery is how the depletion of Ca2+ from the endoplasmic reticulum (ER) activates Ca2+ entry through SOCs in the plasma membrane. Recent studies using genetic approaches have identified genes encoding the ER Ca2+ sensor and a prototypic SOC, the Ca2+-release-activated Ca2+ (CRAC) channel. New findings reveal a unique mechanism for channel activation, in which the CRAC channel and its sensor migrate independently to closely apposed sites of interaction in the ER and the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STIM1 senses ER Ca 2+ to activate Orai1, a pore-forming subunit of the CRAC channel.
Figure 2: The functional units of store-operated Ca 2+ entry assemble in response to store depletion.

Similar content being viewed by others

References

  1. Streb, H., Irvine, R. F., Berridge, M. J. & Schulz, I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67–69 (1983)

    Article  ADS  CAS  Google Scholar 

  2. Putney, J. W. A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986)

    Article  CAS  Google Scholar 

  3. Putney, J. W. & Bird, G. S. The inositol phosphate–calcium signaling system in nonexcitable cells. Endocr. Rev. 14, 610–631 (1993)

    Article  CAS  Google Scholar 

  4. Parekh, A. B. & Putney, J. W. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005)

    Article  CAS  Google Scholar 

  5. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Lewis, R. S. & Cahalan, M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1, 99–112 (1989)

    Article  CAS  Google Scholar 

  7. Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA 90, 6295–6299 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Prakriya, M. & Lewis, R. S. Store-operated calcium channels: properties, functions and the search for a molecular mechanism. In Molecular and Cellular Insights into Ion Channel Biology (ed. Robert Maue) 121–140 (Elsevier Science, Amsterdam, 2004)

    Chapter  Google Scholar 

  9. Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994)

    CAS  PubMed  Google Scholar 

  10. Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nature Immunol. 2, 316–324 (2001)

    Article  CAS  Google Scholar 

  11. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005)

    Article  CAS  Google Scholar 

  12. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005)

    Article  CAS  Google Scholar 

  13. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006)

    Article  CAS  Google Scholar 

  17. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Manji, S. S. et al. STIM1: a novel phosphoprotein located at the cell surface. Biochim. Biophys. Acta 1481, 147–155 (2000)

    Article  CAS  Google Scholar 

  19. Soboloff, J. et al. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr. Biol. 16, 1465–1470 (2006)

    Article  CAS  Google Scholar 

  20. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I crac and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006)

    Article  CAS  Google Scholar 

  21. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006)

    Article  CAS  Google Scholar 

  22. Spassova, M. A. et al. STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc. Natl Acad. Sci. USA 103, 4040–4045 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006)

    Article  CAS  Google Scholar 

  24. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006)

    Article  CAS  Google Scholar 

  25. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 103, 16704–16709 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of STIM1 via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006)

    Article  CAS  Google Scholar 

  27. Demaurex, N. & Frieden, M. Measurements of the free luminal ER Ca2+ concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34, 109–119 (2003)

    Article  CAS  Google Scholar 

  28. Feske, S., Prakriya, M., Rao, A. & Lewis, R. S. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. J. Exp. Med. 202, 651–662 (2005)

    Article  CAS  Google Scholar 

  29. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biol. 8, 771–773 (2006)

    Article  CAS  Google Scholar 

  30. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006)

    Article  CAS  Google Scholar 

  31. Sather, W. A. & McCleskey, E. W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65, 133–159 (2003)

    Article  CAS  Google Scholar 

  32. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006)

    Article  CAS  Google Scholar 

  34. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Franzini-Armstrong, C., Protasi, F. & Tijskens, P. The assembly of calcium release units in cardiac muscle. Ann. NY Acad. Sci. 1047, 76–85 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Dolmetsch, R. E. & Lewis, R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J. Gen. Physiol. 103, 365–388 (1994)

    Article  CAS  Google Scholar 

  37. Bolotina, V. M. & Csutora, P. CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem. Sci. 30, 378–387 (2005)

    Article  CAS  Google Scholar 

  38. Yeromin, A. V., Roos, J., Stauderman, K. A. & Cahalan, M. D. A store-operated calcium channel in Drosophila S2 cells. J. Gen. Physiol. 123, 167–182 (2004)

    Article  CAS  Google Scholar 

  39. Luik, R. M. & Lewis, R. S. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol. Med. doi: 10.1016/j.molmed.2007.01.004 (30 January 2007).

  40. Strübing, C., Krapivinsky, G., Krapivinsky, L. & Clapham, D. E. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001)

    Article  Google Scholar 

  41. Lintschinger, B. et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275, 27799–27805 (2000)

    CAS  PubMed  Google Scholar 

  42. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol. 7, 179–185 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks M. Wu and R. Luik for stimulating discussions throughout the course of this work. This work was supported by a grant from the NIGMS and the Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Lewis.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, R. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007). https://doi.org/10.1038/nature05637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05637

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing