Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple molecular mechanisms for multidrug resistance transporters

Abstract

The acquisition of multidrug resistance is a serious impediment to improved healthcare. Multidrug resistance is most frequently due to active transporters that pump a broad spectrum of chemically distinct, cytotoxic molecules out of cells, including antibiotics, antimalarials, herbicides and cancer chemotherapeutics in humans. The paradigm multidrug transporter, mammalian P-glycoprotein, was identified 30 years ago. Nonetheless, success in overcoming or circumventing multidrug resistance in a clinical setting has been modest. Recent structural and biochemical data for several multidrug transporters now provide mechanistic insights into how they work. Organisms have evolved several elegant solutions to ridding the cell of such cytotoxic compounds. Answers are emerging to questions such as how multispecificity for different drugs is achieved, why multidrug resistance arises so readily, and what chance there is of devising a clinical solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrates of multidrug transporters.
Figure 2: Schematic diagram of domain organization of multidrug transporters.
Figure 3: Structure of ABC multidrug transporters.
Figure 4: Structure of RND multidrug transporters.
Figure 5: Structures of SMR and MFS multidrug transporters.
Figure 6: Drug binding by soluble bacterial transcription factors.
Figure 7: One or multiple drug-binding sites?

Similar content being viewed by others

References

  1. Schinkel, A. H., Wagenaar, E., Mol, C. A. & van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97, 2517–2524 (1996)

    Article  CAS  Google Scholar 

  2. Saier, M. H. & Paulsen, I. T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol. 12, 205–213 (2001)

    Article  CAS  Google Scholar 

  3. Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992)

    Article  CAS  Google Scholar 

  4. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976)

    Article  CAS  Google Scholar 

  5. Gottesman, M. M. Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2001)

    Article  Google Scholar 

  6. Holland, I. B., Cole, S. P. C., Kuchler, K., Higgins, C. F. (eds) ABC Proteins: from Bacteria to Man (Academic, London, 2003)

    Google Scholar 

  7. van Veen, H. W. et al. A bacterial antibiotic resistance gene that complements the human multidrug resistance P-glycoprotein gene. Nature 391, 291–295 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Higgins, C. F. et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448–450 (1986)

    Article  ADS  CAS  Google Scholar 

  9. Rosenberg, M. F., Callaghan, R., Ford, R. C. & Higgins, C. F. Structure of the multidrug-resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy. J. Biol. Chem. 272, 10685–10694 (1997)

    Article  CAS  Google Scholar 

  10. Rosenberg, M. F. et al. Repacking of the transmembrane domains of P-glycoprotein, during the transport ATPase cycle. EMBO J. 20, 5615–5625 (2001)

    Article  CAS  Google Scholar 

  11. Rosenberg, M. F., Kamis, A. B., Callaghan, R., Higgins, C. F. & Ford, R. C. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J. Biol. Chem. 278, 8294–8299 (2003)

    Article  CAS  Google Scholar 

  12. Rosenberg, M. F., Callaghan, R., Modok, S., Higgins, C. F. & Ford, R. C. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem. 280, 2857–2862 (2005)

    Article  CAS  Google Scholar 

  13. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Loo, T. W. & Clarke, D. M. The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis. J. Biol. Chem. 275, 5253–5256 (2000)

    Article  CAS  Google Scholar 

  15. Stenham, D. R. et al. An atomic detail model for the human ATP-binding cassette transporter, P-glycoprotein, derived from disulphide cross-linking and homology modelling. FASEB J. 17, 2287–2289 (2003)

    Article  CAS  Google Scholar 

  16. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)

    Article  CAS  Google Scholar 

  17. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P. & Rees, D. C. An inward facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377 (2007); published online 7 December 2006.

  19. Chang, G. et al. Retraction. Science 314, 1875 (2006)

    CAS  PubMed  Google Scholar 

  20. Zolnerciks, J. K., Wooding, C. & Linton, K. J. In vivo evidence for a Sav1866-like architecture for the human multidrug transporter P-glycoprotein. J. Biol. Chem. (submitted).

  21. Higgins, C. F. & Linton, K. J. The ATP switch model for ABC transporters. Nature Struct. Mol. Biol. 11, 918–926 (2004)

    Article  CAS  Google Scholar 

  22. Dong, J., Yang, G. & Mchaourab, H. S. Structural basis for energy transduction in the transport cycle of MsbA. Science 308, 1023–1028 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Dey, S., Ramachandra, M., Pastan, I., Gottesman, M. M. & Ambudkar, S. V. Evidence for two non-identical drug-interaction sites in the human P-glycoprotein. Proc. Natl Acad. Sci. USA 94, 10594–10599 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Martin, C. et al. Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39, 11901–11906 (2000)

    Article  CAS  Google Scholar 

  25. Martin, C., Higgins, C. F. & Callaghan, R. The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40, 15733–15742 (2001)

    Article  CAS  Google Scholar 

  26. Payen, L. F., Gao, M., Westlake, C. J., Cole, S. P. C. & Deeley, R. G. Role of carboxylate residues adjacent to the conserved core walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). J. Biol. Chem. 278, 38537–38547 (2003)

    Article  CAS  Google Scholar 

  27. van Veen, H. W., Margolles, A., Muller, M., Higgins, C. F. & Konings, W. N. The homodimeric ATP binding cassette transporter LmrA mediates multidrug resistance by a two-site (two-cylinder engine) mechanism. EMBO J. 19, 2503–2514 (2000)

    Article  CAS  Google Scholar 

  28. Vergani, P., Lockless, S. W., Nairn, A. C. & Gadsby, D. C. CFTR channel opening by ATP-driven tight dimerization of its nucleotide binding domains. Nature 433, 876–880 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Higgins, C. F. & Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21 (1992)

    Article  CAS  Google Scholar 

  30. Bolhuis, H. et al. Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15, 4239–4245 (1996)

    Article  CAS  Google Scholar 

  31. Loo, T. W. & Clarke, D. M. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membr. Biol. 206, 173–185 (2005)

    Article  CAS  Google Scholar 

  32. Martin, C. et al. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol. 58, 624–632 (2000)

    Article  CAS  Google Scholar 

  33. Shapiro, A. B. & Ling, V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur. J. Biochem. 250, 130–137 (1997)

    Article  CAS  Google Scholar 

  34. Zelcer, N. et al. Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ABCC2). J. Biol. Chem. 278, 23538–23544 (2003)

    Article  CAS  Google Scholar 

  35. Lugo, M. R. & Sharom, F. J. Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44, 14020–14029 (2005)

    Article  CAS  Google Scholar 

  36. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001)

    Article  CAS  Google Scholar 

  37. Ma, Y. et al. Hedgehog-medicated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111, 63–75 (2002)

    Article  CAS  Google Scholar 

  38. Zgurskaya, H. I. & Nikaido, H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli.. Proc. Natl Acad. Sci. USA 96, 7190–7195 (1999)

    Article  ADS  CAS  Google Scholar 

  39. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structure of a multidrug transporter reveals a functionally rotating mechanism. Nature 443, 173–179 (2006)

    Article  ADS  CAS  Google Scholar 

  41. Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003)

    Article  ADS  CAS  Google Scholar 

  42. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006)

    Article  ADS  CAS  Google Scholar 

  43. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    Article  ADS  CAS  Google Scholar 

  44. Aires, J. R. & Nikaido, H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 187, 1923–1929 (2005)

    Article  CAS  Google Scholar 

  45. Schuldiner, S., Lebendiker, M. & Yerushalmi, H. EmrE, the smallest ion-coupled transporter, provides a unique paradigm for structure-function studies. J. Exp. Biol. 200, 335–341 (1997)

    CAS  PubMed  Google Scholar 

  46. Ubarretxena-Belandia, I., Baldwin, J. M., Schuldiner, S. & Tate, C. G. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22, 6175–6181 (2003)

    Article  CAS  Google Scholar 

  47. Sharoni, M., Steiner-Mordoch, S. & Schuldiner, S. Exploring the binding domain of EmrE, the smallest multidrug transporter. J. Biol. Chem. 280, 32849–32855 (2005)

    Article  CAS  Google Scholar 

  48. Soskine, M., Mark, S., Tayer, N., Mizrachi, R. & Schuldiner, S. On parallel and antiparallel topology of a homodimeric multidrug transporter. J. Biol. Chem. 281, 36205–36212 (2006)

    Article  CAS  Google Scholar 

  49. Rapp, M., Granseth, E., Seppala, S. & von Heijne, G. Identification and evolution of dual-topology proteins. Nature Struct. Mol. Biol. 13, 112–116 (2006)

    Article  CAS  Google Scholar 

  50. Yerushalmi, H. & Schuldiner, S. A model for coupling of H+ and substrate fluxes based on ‘time-sharing’ of a common binding site. Biochemistry 39, 14711–14719 (2000)

    Article  CAS  Google Scholar 

  51. Abramson, J. et al. Structure and mechanisms of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)

    Article  ADS  CAS  Google Scholar 

  52. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanisms of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003)

    Article  ADS  CAS  Google Scholar 

  53. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312, 741–744 (2006)

    Article  ADS  CAS  Google Scholar 

  54. Adler, J. & Bibi, J. Promiscuity in the geometry of electrostatic interactions between the Escherichia coli multidrug resistance transporter MdfA and cationic substrates. J. Biol. Chem. 280, 2721–2729 (2005)

    Article  CAS  Google Scholar 

  55. Mazurkiewicz, P., Driessen, A. J. & Konings, W. N. Energetics of wild type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. Biochim. Biophys. Acta 1658, 252–261 (2004)

    Article  CAS  Google Scholar 

  56. Putman, M., Koole, L. A., van Veen, H. W. & Konings, W. N. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 38, 13900–13905 (1999)

    Article  CAS  Google Scholar 

  57. Lewinson, O., Padan, E. & Bibi, E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc. Natl Acad. Sci. USA 101, 14073–14078 (2004)

    Article  ADS  CAS  Google Scholar 

  58. Abramson, J., Iwata, S. & Kaback, H. R. Lactose permease as a paradigm for membrane transport proteins (Review). Mol. Membr. Biol. 21, 227–236 (2004)

    Article  CAS  Google Scholar 

  59. Zheleznova, E. E., Markham, P. N., Neyfakh, A. A. & Brennan, R. G. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96, 353–362 (1999)

    Article  CAS  Google Scholar 

  60. Vázquez-Laslop, N., Markham, P. N. & Neyfakh, A. A. Mechanisms of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand binding site. Biochemistry 38, 16925–16931 (1999)

    Article  Google Scholar 

  61. Schumacher, M. A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001)

    Article  ADS  CAS  Google Scholar 

  62. Schumacher, M. A., Miller, M. C. & Brennan, R. G. Structural mechanisms of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J. 23, 2923–2930 (2004)

    Article  CAS  Google Scholar 

  63. Neyfakh, A. A. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44, 1123–1130 (2002)

    Article  CAS  Google Scholar 

  64. Tame, J. R. H. et al. The structural basis of sequence-independent peptide binding by OppA protein. Science 264, 1578–1581 (1994)

    Article  ADS  CAS  Google Scholar 

  65. Cupp-Vickery, J., Anderson, R. & Hatziris, Z. Crystal structures of ligand complexes of P450eryF exhibiting homotropic competition. Proc. Natl Acad. Sci. USA 97, 3050–3055 (2000)

    Article  ADS  CAS  Google Scholar 

  66. Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333 (2001)

    Article  CAS  Google Scholar 

  67. Ramoni, R. et al. The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J. Biol. Chem. 276, 7150–7155 (2001)

    Article  CAS  Google Scholar 

  68. Chang, G. & Roth, C. B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293, 1793–1800 (2001)

    Article  ADS  CAS  Google Scholar 

  69. Ma, C. & Chang, G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl Acad. Sci. USA 101, 2852–2857 (2004)

    Article  ADS  CAS  Google Scholar 

  70. Mitchell, P. A general theory for membrane transport from studies of bacteria. Nature 180, 134–136 (1957)

    Article  ADS  CAS  Google Scholar 

  71. Smit, J. J. M. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993)

    Article  CAS  Google Scholar 

  72. Stein, W. D., Cardarelli, C., Pastan, I. & Gottesman, M. M. Kinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates. Mol. Pharmacol. 45, 763–772 (1994)

    CAS  PubMed  Google Scholar 

  73. Buchler, M. et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMRP, reveals a novel conjugate export pump deficient in the hyperbilirubinemic mutant rats. J. Biol. Chem. 271, 15091–15098 (1996)

    Article  CAS  Google Scholar 

  74. Ahmed, M. et al. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacteriol. 177, 3904–3910 (1995)

    Article  CAS  Google Scholar 

  75. Lewinson, O. & Bibi, E. Evidence for simultaneous binding of dissimilar substrates by the Escherichia coli multidrug transporter MdfA. Biochemistry 40, 12612–12618 (2001)

    Article  CAS  Google Scholar 

  76. Loe, D. W., Deeley, R. G. & Cole, S. P. C. Characterisation of vincristine transport by the Mr 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res. 58, 5130–5136 (1998)

    CAS  PubMed  Google Scholar 

  77. Rius, M., Mies, A. J., Hummel-Eisenbeiss, J., Jedlitschky, G. & Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38, 374–384 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review is dedicated to Alex Neyfakh (1959–2006) who contributed much to our understanding of the multispecificity of drug binding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Higgins.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, C. Multiple molecular mechanisms for multidrug resistance transporters. Nature 446, 749–757 (2007). https://doi.org/10.1038/nature05630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05630

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing