Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals

Abstract

The dynamics of the Earth’s interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a ‘post-perovskite’ phase1,2,3 may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy4, but the mechanical properties of these mineralogical phases are largely unknown5,6,7. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations8. A quantitative description of flow in the Earth’s mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls–Nabarro model9,10. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of an edge dislocation in a simple square lattice.
Figure 2: PN models of dislocation cores in MgSiO 3 pPv at 120 GPa.
Figure 3: An [010] edge dislocation in MgSiO 3 pPv at 120 GPa.
Figure 4: MgSiO 3 pV at 100 GPa.

Similar content being viewed by others

References

  1. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 834–836 (2004)

    Article  Google Scholar 

  2. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 430, 445–448 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Itaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430, 442–445 (2004)

    Article  ADS  Google Scholar 

  4. Wookey, J., Stackhouse, S., Kendall, J. M., Brodholt, J. & Price, G. D. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438, 1004–1007 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Cordier, P., Ungár, T., Zsoldos, L. & Tichy, G. Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 428, 837–840 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Oganov, A. R., Martonák, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Merkel, S. et al. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311, 644–646 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Hirth, J. P. & Lothe, J. Theory of Dislocations (Wiley & Sons, New York, 1982)

    MATH  Google Scholar 

  9. Peierls, R. E. On the size of a dislocation. Proc. Phys. Soc. Lond. 52, 34–37 (1940)

    Article  ADS  Google Scholar 

  10. Nabarro, F. R. N. Dislocations in a simple cubic lattice. Proc. Phys. Soc. Lond. 59, 256–272 (1947)

    Article  ADS  CAS  Google Scholar 

  11. Cai, W., Bulatov, V. V., Chang, J., Li, J. & Yip, S. in Dislocations in Solids (eds Nabarro, F. N. R. & Hirth, J. P.) 1–80 (Elsevier, Amsterdam, 2004)

    Book  Google Scholar 

  12. Durinck, J., Legris, A. & Cordier, P. Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: first principle calculations. Am. Mineral. 90, 1072–1077 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Durinck, J., Legris, A. & Cordier, P. Pressure sensitivity of forsterite slip systems: first-principle calculations of generalised stacking faults. Phys. Chem. Miner. 32, 646–654 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Carrez, P., Cordier, P., Mainprice, D. & Tommasi, A. Slip systems and plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from numerical modelling. Eur. J. Mineral. 18, 149–160 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Walker, A. M., Slater, B., Gale, J. D. & Wright, K. Predicting the structure of screw dislocations in nanoporous materials. Nature Mater. 3, 715–720 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Walker, A. M., Gale, J. D., Slater, B. & Wright, K. Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Phys. Chem. Chem. Phys. 7, 3235–3242 (2005)

    Article  CAS  Google Scholar 

  17. Cawkwell, M. J., Nguyen-Manh, D., Woodward, C., Pettifor, D. G. & Vitek, V. Origin of brittle cleavage in iridium. Science 309, 1059–1062 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Cordier, P., Barbe, F., Durinck, J., Tommasi, A. & Walker, A. M. in Mineral Behaviour at Extreme Conditions (ed. Miletich, R.) 389–415 (Eötvös Univ. Press, Budapest, 2005)

    Google Scholar 

  19. Joos, B., Ren, Q. & Duesbery, M. S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Phys. Rev. B 50, 5890–5898 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Lu, G., Kioussis, N., Bulatov, V. V. & Kaxiras, E. Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099–3108 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Miranda, C. R. & Scandolo, S. Computational materials science meets geophysics: dislocations and slip planes of MgO. Comput. Phys. Commun. 169, 24–27 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Vítek, V. Intrinsic stacking faults in body-centered cubic crystals. Phil. Mag. 18, 773–786 (1968)

    Article  ADS  Google Scholar 

  23. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  26. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Setter, N. & Waser, R. Electroceramic materials. Acta Mater. 48, 151–178 (2000)

    Article  CAS  Google Scholar 

  28. Hÿtch, M., Putaux, J. L. & Pénisson, J. M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270–273 (2003)

    Article  ADS  Google Scholar 

  29. Chisholm, M. F., Kumar, S. & Hazzledine, P. Dislocations in complex materials. Science 307, 701–703 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Jia, C. L., Thust, A. & Urban, K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Niwa, K. et al. Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by the plastic deformation under pressure. Geophys. Res. Lett. (submitted).

  32. Santillan, J., Shim, S.-H., Shen, G. & Prakapenka, V. B. High-pressure phase transition in Mn2O3: application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys. Res. Lett. 33 L15307 doi: 10.1029/2006GL026423 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CNRS-INSU under the DyETI programme. Computational resources were provided by IDRIS and CRI-USTL supported by the Fonds Européens de Développement Régional and the Région Nord-Pas de Calais. D. Rodney is thanked for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cordier.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Supplementary Figures 1-7with legends. (PDF 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrez, P., Ferré, D. & Cordier, P. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 446, 68–70 (2007). https://doi.org/10.1038/nature05593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05593

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing