Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relativistic effects in homogeneous gold catalysis

Abstract

Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine–gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of AuH and AgH bond energies.
Figure 2: Catalytic activation of alkynes.
Figure 3: Oxidation state determines product.
Figure 4: Proposed multiply-bonded Au–C structures.
Figure 5: Enyne cycloisomerization.
Figure 6: Comparison of reactivities of Au( i ) and In( iii).
Figure 7: Mechanism of the Rautenstrauch reaction.
Figure 8: A proposed carbenoid intermediate.
Figure 9: Intramolecular acetylenic Schmidt reaction.

References

  1. Pyykkö, P. Theoretical chemistry of gold. II. Inorg. Chim. Acta 358, 4113–4130 (2005)

    Article  CAS  Google Scholar 

  2. Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004)

    Article  CAS  Google Scholar 

  3. McKelvey, D. R. Relativistic effects on chemical properties. J. Chem. Educ. 60, 112–116 (1983)

    Article  CAS  Google Scholar 

  4. Pyykkö, P. & Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979)

    Article  Google Scholar 

  5. Desclaux, J. P. & Pyykkö, P. Dirac–Fock one-center calculations—molecules CuH, AgH and AuH including P-type symmetry functions. Chem. Phys. Lett. 39, 300–303 (1976)

    Article  ADS  CAS  Google Scholar 

  6. Scherbaum, F., Grohmann, A., Huber, B., Krüger, C. & Schmidbaur, H. ‘Aurophilicity’ as a consequence of relativistic effects: The hexakis(triphenylphosphaneaurio)methane dication [(Ph3P)Au]6C2+. Angew. Chem. Int. Edn Engl. 27, 1544–1546 (1988)

    Article  Google Scholar 

  7. Carvajal, M. A., Novoa, J. J. & Alvarez, S. Choice of coordination number in d10 complexes of Group 11 metals. J. Am. Chem. Soc. 126, 1465–1477 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Schwerdtfeger, P., Hermann, H. L. & Schmidbaur, H. Stability of the gold(I)–phosphine bond. A comparison with other Group 11 elements. Inorg. Chem. 42, 1334–1342 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Nakanishi, W., Yamanaka, M. & Nakamura, E. Reactivity and stability of organocopper(I), silver(I), and gold(I) ate compounds and their trivalent derivatives. J. Am. Chem. Soc. 127, 1446–1453 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Komiya, S. & Kochi, J. K. Electrophilic cleavage of organogold complexes with acids—mechanism of reductive elimination of dialkyl(aniono)gold(III) species. J. Am. Chem. Soc. 98, 7599–7607 (1976)

    Article  CAS  Google Scholar 

  11. Komiya, S., Albright, T. A., Hoffmann, R. & Kochi, J. K. Reductive elimination and isomerization of organogold complexes—theoretical studies of trialkylgold species as reactive intermediates. J. Am. Chem. Soc. 98, 7255–7265 (1976)

    Article  CAS  Google Scholar 

  12. Tamaki, A. & Kochi, J. K. Oxidative addition in coupling of alkylgold(I) with alkyl-halides. J. Organometall. Chem. 64, 411–425 (1974)

    Article  CAS  Google Scholar 

  13. Hashmi, A. S. K. Homogeneous catalysis by gold. Gold Bull. 37, 51–65 (2004)

    Article  CAS  Google Scholar 

  14. Hashmi, A. S. K. Homogeneous gold catalysts and alkynes: A successful liaison. Gold Bull. 36, 3–9 (2003)

    Article  CAS  Google Scholar 

  15. Fukuda, Y., Utimoto, K. & Nozaki, H. Preparation of 2,3,4,5-tetrahydropyridines from 5-alkynylamines under the catalytic action of Au(III). Heterocycles 25, 297–300 (1987)

    Article  CAS  Google Scholar 

  16. Asao, N., Takahashi, K., Lee, S., Kasahara, T. & Yamamoto, Y. AuCl3-catalyzed benzannulation: Synthesis of naphthyl ketone derivatives from o-alkynylbenzaldehydes with alkynes. J. Am. Chem. Soc. 124, 12650–12651 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Hashmi, A. S. K., Frost, T. M. & Bats, J. W. Highly selective gold-catalyzed arene synthesis. J. Am. Chem. Soc. 122, 11553–11554 (2000)

    Article  CAS  Google Scholar 

  18. Hashmi, A. S. K., Schwarz, L., Choi, J.-H. & Frost, T. M. A new gold-catalyzed C–C bond formation. Angew. Chem. Int. Ed. 39, 2285–2288 (2000)

    Article  CAS  Google Scholar 

  19. Fukuda, Y. & Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals by means of Au(III) catalyst. J. Org. Chem. 56, 3729–3731 (1991)

    Article  CAS  Google Scholar 

  20. Yao, X. & Li, C. J. Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminal alkynes with ortho-alkynylaryl aldehyde. Org. Lett. 8, 1953–1955 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Arcadi, A., Bianchi, G., Di Giuseppe, S. & Marinelli, F. Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chem. 5, 64–67 (2003)

    Article  CAS  Google Scholar 

  22. Teles, J. H., Brode, S. & Chabanas, M. Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes. Angew. Chem. Int. Ed. 37, 1415–1418 (1998)

    Article  CAS  Google Scholar 

  23. Kennedy-Smith, J. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed Conia-ene reaction of beta-ketoesters with alkynes. J. Am. Chem. Soc. 126, 4526–4527 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Staben, S. T., Kennedy-Smith, J. J. & Toste, F. D. Gold-catalyzed 5-endo-dig carbocyclization of acetylenic dicarbonyl compounds. Angew. Chem. Int. Ed. 43, 5350–5352 (2004)

    Article  CAS  Google Scholar 

  25. Reetz, M. T. & Sommer, K. Gold-catalyzed hydroarylation of alkynes. Eur. J. Org. Chem. 2003, 3485–3496 (2003)

    Article  CAS  Google Scholar 

  26. Nevado, C. & Echavarren, A. M. Intramolecular hydroarylation of alkynes catalyzed by platinum or gold: Mechanism and endo selectivity. Chem. Eur. J. 11, 3155–3164 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Ferrer, C. & Echavarren, A. M. Gold-catalyzed intramolecular reaction of indoles with alkynes: Facile formation of eight-membered rings and an unexpected allenylation. Angew. Chem. Int. Ed. 45, 1105–1109 (2006)

    Article  CAS  Google Scholar 

  28. Antoniotti, S., Genin, E., Michelet, W. & Genet, J. P. Highly efficient access to strained bicyclic ketals via gold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc. 127, 9976–9977 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Buzas, A. & Gagosz, F. Gold(I)-catalyzed formation of 4-alkylidene-1,3-dioxolan-2-ones from propargylic tert-butyl carbonates. Org. Lett. 8, 515–518 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Mizushima, E., Hayashi, T. & Tanaka, M. Au(I)-catalyzed highly efficient intermolecular hydroamination of alkynes. Org. Lett. 5, 3349–3352 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, L. M. Tandem Au-catalyzed 3,3-rearrangement-[2 + 2] cycloadditions of propargylic esters: Expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. J. Am. Chem. Soc. 127, 16804–16805 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Suhre, M. H., Reif, M. & Kirsch, S. F. Gold(I)-catalyzed synthesis of highly substituted furans. Org. Lett. 7, 3925–3927 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Morita, N. & Krause, N. The first gold-catalyzed C–S bond formation: Cycloisomerization of alpha-thioallenes to 2,5-dihydrothiophenes. Angew. Chem. Int. Ed. 45, 1897–1899 (2006)

    Article  CAS  Google Scholar 

  34. Zhang, J. L., Yang, C. G. & He, C. Gold(I)-catalyzed intra- and intermolecular hydroamination of unactivated olefins. J. Am. Chem. Soc. 128, 1798–1799 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Yao, X. & Li, C. J. Highly efficient addition of activated methylene compounds to alkenes catalyzed by gold and silver. J. Am. Chem. Soc. 126, 6884–6885 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Brouwer, C. & He, C. Efficient gold-catalyzed hydroamination of 1,3-dienes. Angew. Chem. Int. Ed. 45, 1744–1747 (2006)

    Article  CAS  Google Scholar 

  37. Nguyen, R. V., Yao, X. & Li, C. J. Highly efficient gold-catalyzed atom-economical annulation of phenols with dienes. Org. Lett. 8, 2397–2399 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Rosenfeld, D. C., Shekhar, S., Takemiya, A., Utsunomiya, M. & Hartwig, J. F. Hydroamination and hydroalkoxylation catalyzed by triflic acid. Parallels to reactions initiated with metal triflates. Org. Lett. 8, 4179–4182 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Li, Z. et al. Bronsted acid catalyzed addition of phenols, carboxylic acids, and tosylamides to simple olefins. Org. Lett. 8, 4175–4178 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Schwerdtfeger, P., Boyd, P. D. W., Burrell, A. K., Robinson, W. T. & Taylor, M. J. Relativistic effects in gold chemistry. 3. Gold(I) complexes. Inorg. Chem. 29, 3593–3607 (1990)

    Article  CAS  Google Scholar 

  41. Hertwig, R. H. et al. A comparative computational study of cationic coinage metal-ethylene complexes (C2H4)M+ (M = Cu, Ag, and Au). J. Phys. Chem. 100, 12253–12260 (1996)

    Article  CAS  Google Scholar 

  42. Nechaev, M. S., Rayon, V. M. & Frenking, G. Energy partitioning analysis of the bonding in ethylene and acetylene complexes of Group 6, 8, and 11 metals: (CO)(5)TM-C2Hx and Cl4TM-C2Hx (TM = Cr, Mo, W), (CO)(4)TM-C2Hx (TM = Fe, Ru, Os), and TM+-C2Hx (TM = Cu, Ag, Au). J. Phys. Chem. A 108, 3134–3142 (2004)

    Article  CAS  Google Scholar 

  43. Fleming, I. Frontier Orbitals and Organic Chemical Reactions (Wiley, Chichester, 1976)

    Google Scholar 

  44. Cinellu, M. A. et al. Reactions of gold(III) oxo complexes with cyclic alkenes. Angew. Chem. Int. Ed. 44, 6892–6895 (2005)

    Article  CAS  Google Scholar 

  45. Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. Gold catalysis: Mild conditions for the synthesis of oxazoles from N-propargylcarboxamides and mechanistic aspects. Org. Lett. 6, 4391–4394 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Nevado, C. & Echavarren, A. M. Transition metal-catalyzed hydroarylation of alkynes. Synthesis 167–182 (2005)

  47. Sromek, A. W., Rubina, M. & Gevorgyan, V. 1,2-Halogen migration in haloallenyl ketones: Regiodivergent synthesis of halofurans. J. Am. Chem. Soc. 127, 10500–10501 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Straub, B. F. Gold(I) or gold(III) as active species in AuCl3-catalyzed cyclization/cycloaddition reactions? A DFT study. Chem. Commun. 1726–1728 (2004)

  49. Markham, J. P., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed ring expansion of cyclopropanols and cyclobutanols. J. Am. Chem. Soc. 127, 9708–9709 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. et al. Highly active Au(I) catalyst for the intramolecular exo-hydrofunctionalization of allenes with carbon, nitrogen, and oxygen nucleophiles. J. Am. Chem. Soc. 128, 9066–9073 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Marion, N., Díez-González, S., de Frémont, P., Noble, A. R. & Nolan, S. P. AuI-catalyzed tandem [3,3] rearrangement–intramolecular hydroarylation: Mild and efficient formation of substituted indenes. Angew. Chem. Int. Edn 45, 3647–3650 (2006)

    Article  CAS  Google Scholar 

  52. Sherry, B. D. & Toste, F. D. Gold(I)-catalyzed propargyl Claisen rearrangement. J. Am. Chem. Soc. 126, 15978–15979 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Hashmi, A. S. K., Weyrauch, J. P., Rudolph, M. & Kurpejovic, E. Gold catalysis: the benefits of N and N,O ligands. Angew. Chem. Int. Ed. 43, 6545–6547 (2004)

    Article  CAS  Google Scholar 

  54. Zhou, C. Y., Chan, P. W. H. & Che, C. M. Gold(III) porphyrin-catalyzed cycloisomerization of allenones. Org. Lett. 8, 325–328 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. Irikura, K. K. & Goddard, W. A. Energetics of third-row transition metal methylidene ions MCH2+ (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc. 116, 8733–8740 (1994)

    Article  CAS  Google Scholar 

  56. Heinemann, C., Hertwig, R. H., Wesendrup, R., Koch, W. & Schwarz, H. Relativistic effects on bonding in cationic transition-metal–carbene complexes—a density-functional study. J. Am. Chem. Soc. 117, 495–500 (1995)

    Article  CAS  Google Scholar 

  57. Barysz, M. & Pyykkö, P. Strong chemical bonds to gold. High level correlated relativistic results for diatomic AuBe+, AuC+, AgMg+, and AuSi+. Chem. Phys. Lett. 285, 398–403 (1998)

    Article  ADS  CAS  Google Scholar 

  58. Aguirre, F., Husband, J., Thompson, C. J. & Metz, R. B. Gas-phase photodissociation of AuCH2+: the dissociation threshold of jet-cooled and rotationally thermalized ions. Chem. Phys. Lett. 318, 466–470 (2000)

    Article  ADS  CAS  Google Scholar 

  59. Xu, Q., Imamura, Y., Fujiwara, M. & Souma, Y. A new gold catalyst: Formation of gold(I) carbonyl, [Au(CO)n]+ (n = 1, 2), in sulfuric acid and its application to carbonylation of olefins. J. Org. Chem. 62, 1594–1598 (1997)

    Article  CAS  Google Scholar 

  60. Chatt, J. & Duncanson, L. A. Olefin co-ordination compounds. 3. Infra-red spectra and structure—attempted preparation of acetylene complexes. J. Chem. Soc. 2939–2947 (1953)

  61. Dewar, J. S. A review of the pi-complex theory. Bull. Soc. Chim. Fr. 18, C71–C79 (1951)

    Google Scholar 

  62. deFremont, P., Scott, N. M., Stevens, E. D. & Nolan, S. P. Synthesis and structural characterization of N-heterocyclic carbene gold(I) complexes. Organometallics 24, 2411–2418 (2005)

    Article  CAS  Google Scholar 

  63. Raubenheimer, H. G., Esterhuysen, M. W., Timoshkin, A., Chen, Y. & Frenking, G. Electrophilic addition of Ph3PAu+ to anionic alkoxy Fischer-type carbene complexes: A novel approach to metal-stabilized bimetallic vinyl ether complexes. Organometallics 21, 3173–3181 (2002)

    Article  CAS  Google Scholar 

  64. Nakamura, I., Sato, T. & Yamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: Synthesis of 2,3-disubstituted benzothiophenes from (alpha-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed. 45, 4473–4475 (2006)

    Article  CAS  Google Scholar 

  65. Dube, P. & Toste, F. D. Synthesis of indenyl ethers by gold(I)-catalyzed intramolecular carboalkoxylation of alkynes. J. Am. Chem. Soc. 128, 12062–12063 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. Nieto-Oberhuber, C. et al. Gold(I)-catalyzed cyclizations of 1,6-enynes: Alkoxycyclizations and exo/endo skeletal rearrangements. Chem. Eur. J. 12, 1677–1693 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Nieto-Oberhuber, C. et al. Cationic gold(I) complexes: Highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. Angew. Chem. Int. Ed. 43, 2402–2406 (2004)

    Article  CAS  Google Scholar 

  68. Mamane, V., Gress, T., Krause, H. & Fürstner, A. Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. J. Am. Chem. Soc. 126, 8654–8655 (2004)

    Article  CAS  PubMed  Google Scholar 

  69. Luzung, M. R., Markham, J. P. & Toste, F. D. Catalaytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. J. Am. Chem. Soc. 126, 10858–10859 (2004)

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, L. & Kozmin, S. A. Gold-catalyzed assembly of heterobicyclic systems. J. Am. Chem. Soc. 127, 6962–6963 (2005)

    Article  CAS  PubMed  Google Scholar 

  71. Fürstner, A., Stelzer, F. & Szillat, H. Platinum-catalyzed cycloisomerization reactions of enynes. J. Am. Chem. Soc. 123, 11863–11869 (2001)

    Article  PubMed  CAS  Google Scholar 

  72. Mendez, M., Mamane, V. & Fürstner, A. Platinum-catalyzed skeletal rearrangement reactions: Generating structural diversity by a uniform mechanism. ChemTracts Org. Chem. 16, 397–425 (2003)

    CAS  Google Scholar 

  73. Fürstner, A. & Mamane, V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction. J. Org. Chem. 67, 6264–6267 (2002)

    Article  PubMed  CAS  Google Scholar 

  74. Chatani, N., Inoue, H., Kotsuma, T. & Murai, S. Skeletal reorganization of enynes to 1-vinylcycloalkenes catalyzed by GaCl3 . J. Am. Chem. Soc. 124, 10294–10295 (2002)

    Article  CAS  PubMed  Google Scholar 

  75. Mamane, V., Hannen, P. & Fürstner, A. Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions. Chem. Eur. J. 10, 4556–4575 (2004)

    Article  CAS  PubMed  Google Scholar 

  76. Christian, B. Electrophilic activation and cycloisomerization of enynes: A new route to functional cyclopropanes. Angew. Chem. Int. Ed. 44, 2328–2334 (2005)

    Article  CAS  Google Scholar 

  77. Ma, S., Yu, S. & Gu, Z. Gold-catalyzed cyclization of enynes. Angew. Chem. Int. Ed. 45, 200–203 (2006)

    Article  CAS  Google Scholar 

  78. Furstner, A., Davies, P. W. & Gress, T. Cyclobutenes by platinum-catalyzed cycloisomerization reactions of enynes. J. Am. Chem. Soc. 127, 8244–8245 (2005)

    Article  PubMed  CAS  Google Scholar 

  79. Oi, S., Tsukamoto, I., Miyano, S. & Inoue, Y. Cationic platinum-complex-catalyzed skeletal reorganization of enynes. Organometallics 20, 3704–3709 (2001)

    Article  CAS  Google Scholar 

  80. BhanuPrasad, B. A., Yoshimoto, F. K. & Sarpong, R. Pt-catalyzed pentannulations from in situ generated metallo-carbenoids utilizing propargylic esters. J. Am. Chem. Soc. 127, 12468–12469 (2005)

    Article  CAS  Google Scholar 

  81. Ito, Y., Sawamura, M. & Hayashi, T. Catalytic asymmetric aldol reaction—reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J. Am. Chem. Soc. 108, 6405–6406 (1986)

    Article  CAS  Google Scholar 

  82. Munoz, M. P., Adrio, J., Carretero, J. C. & Echavarren, A. M. Ligand effects in gold- and platinum-catalyzed cyclization of enynes: Chiral gold complexes for enantioselective alkoxycyclization. Organometallics 24, 1293–1300 (2005)

    Article  CAS  Google Scholar 

  83. Shi, X., Gorin, D. J. & Toste, F. D. Synthesis of 2-cyclopentenones by gold(I)-catalyzed Rautenstrauch rearrangement. J. Am. Chem. Soc. 127, 5802–5803 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. Rautenstrauch, V. 2-Cyclopentenones from 1-ethynyl-2-propenyl acetates. J. Org. Chem. 49, 950–952 (1984)

    Article  CAS  Google Scholar 

  85. Faza, O. N., Lopez, C. S., Alvarez, R. & de Lera, A. R. Mechanism of the gold(I)-catalyzed Rautenstrauch rearrangement: A center-to-helix-to-center chirality transfer. J. Am. Chem. Soc. 128, 2434–2437 (2006)

    Article  PubMed  CAS  Google Scholar 

  86. Fehr, C. & Galindo, J. Synthesis of (-)-cubebol by face-selective platinum-, gold-, or copper-catalyzed cycloisomerization: Evidence for chirality transfer. Angew. Chem. Int. Edn 45, 2901–2904 (2006)

    Article  CAS  Google Scholar 

  87. Furstner, A. & Hannen, P. Carene terpenoids by gold-catalyzed cycloisomerization reactions. Chem. Commun. 2546–2547 (2004)

  88. Furstner, A. & Hannen, P. Platinum- and gold-catalyzed rearrangement reactions of propargyl acetates: Total syntheses of (-)-alpha-cubebene, (-)-cubebol, sesquicarene and related terpenes. Chem. Eur. J. 12, 3006–3019 (2006)

    Article  PubMed  CAS  Google Scholar 

  89. Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. Miki, K., Ohe, K. & Uemura, S. A new ruthenium-catalyzed cyclopropanation of alkenes using propargylic acetates as a precursor of vinylcarbenoids. Tetrahedr. Lett. 44, 2019–2022 (2003)

    Article  CAS  Google Scholar 

  91. Gorin, D. J., Davis, N. R. & Toste, F. D. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. J. Am. Chem. Soc. 127, 11260–11261 (2005)

    Article  CAS  PubMed  Google Scholar 

  92. Hashmi, A. S. K., Blanco, M. C., Kurpejovic, E., Frey, W. & Bats, J. W. Gold catalysis: First applications of cationic binuclear gold(I) complexes and the first intermolecular reaction of an alkyne with a furan. Adv. Synth. Catal. 348, 709–713 (2006)

    Article  CAS  Google Scholar 

  93. Fructos, M. R. et al. A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew. Chem. Int. Ed. 44, 5284–5288 (2005)

    Article  CAS  Google Scholar 

  94. Hoffmann-Roder, A. & Krause, N. The golden gate to catalysis. Org. Biomol. Chem. 3, 387–391 (2005)

    Article  PubMed  Google Scholar 

  95. Hashmi, A. S. K. The catalysis gold rush: New claims. Angew. Chem. Int. Ed. 44, 6990–6993 (2005)

    Article  CAS  Google Scholar 

  96. Pitzer, K. S. Relativistic effects on chemical properties. Acc. Chem. Res. 12, 272–276 (1979)

    Article  Google Scholar 

  97. Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Article  Google Scholar 

  98. Norrby, L. J. Why is mercury liquid—or, why do relativistic effects not get into chemistry textbooks?. J. Chem. Educ. 68, 110–113 (1991)

    Article  CAS  Google Scholar 

  99. Bagus, P. S., Lee, Y. S. & Pitzer, K. S. Effects of relativity and of lanthanide contraction on atoms from hafnium to bismuth. Chem. Phys. Lett. 33, 408–411 (1975)

    Article  ADS  CAS  Google Scholar 

  100. Desclaux, J. P. Relativistic Dirac–Fock expectation values for atoms with Z = 1 to Z = 120. Atom. Data Nucl. Data Tables 12, 311–406 (1973)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Pyykkö for discussions during the preparation of this manuscript. Funding from the University of California, Berkeley, NIHGMS, Merck Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont, GlaxoSmithKline, Eli Lilly & Co., Pfizer, AstraZeneca, Abbott, Boehringer Ingelheim, Novartis and Roche is gratefully acknowledged. D.J.G. is an ACS Organic Division predoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dean Toste.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorin, D., Toste, F. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007). https://doi.org/10.1038/nature05592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05592

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing