Relativistic effects in homogeneous gold catalysis


Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine–gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of AuH and AgH bond energies.
Figure 2: Catalytic activation of alkynes.
Figure 3: Oxidation state determines product.
Figure 4: Proposed multiply-bonded Au–C structures.
Figure 5: Enyne cycloisomerization.
Figure 6: Comparison of reactivities of Au( i ) and In( iii).
Figure 7: Mechanism of the Rautenstrauch reaction.
Figure 8: A proposed carbenoid intermediate.
Figure 9: Intramolecular acetylenic Schmidt reaction.


  1. 1

    Pyykkö, P. Theoretical chemistry of gold. II. Inorg. Chim. Acta 358, 4113–4130 (2005)

    Google Scholar 

  2. 2

    Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004)

    Google Scholar 

  3. 3

    McKelvey, D. R. Relativistic effects on chemical properties. J. Chem. Educ. 60, 112–116 (1983)

    CAS  Google Scholar 

  4. 4

    Pyykkö, P. & Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979)

    Google Scholar 

  5. 5

    Desclaux, J. P. & Pyykkö, P. Dirac–Fock one-center calculations—molecules CuH, AgH and AuH including P-type symmetry functions. Chem. Phys. Lett. 39, 300–303 (1976)

    ADS  CAS  Google Scholar 

  6. 6

    Scherbaum, F., Grohmann, A., Huber, B., Krüger, C. & Schmidbaur, H. ‘Aurophilicity’ as a consequence of relativistic effects: The hexakis(triphenylphosphaneaurio)methane dication [(Ph3P)Au]6C2+. Angew. Chem. Int. Edn Engl. 27, 1544–1546 (1988)

    Google Scholar 

  7. 7

    Carvajal, M. A., Novoa, J. J. & Alvarez, S. Choice of coordination number in d10 complexes of Group 11 metals. J. Am. Chem. Soc. 126, 1465–1477 (2004)

    CAS  PubMed  Google Scholar 

  8. 8

    Schwerdtfeger, P., Hermann, H. L. & Schmidbaur, H. Stability of the gold(I)–phosphine bond. A comparison with other Group 11 elements. Inorg. Chem. 42, 1334–1342 (2003)

    CAS  PubMed  Google Scholar 

  9. 9

    Nakanishi, W., Yamanaka, M. & Nakamura, E. Reactivity and stability of organocopper(I), silver(I), and gold(I) ate compounds and their trivalent derivatives. J. Am. Chem. Soc. 127, 1446–1453 (2005)

    CAS  PubMed  Google Scholar 

  10. 10

    Komiya, S. & Kochi, J. K. Electrophilic cleavage of organogold complexes with acids—mechanism of reductive elimination of dialkyl(aniono)gold(III) species. J. Am. Chem. Soc. 98, 7599–7607 (1976)

    CAS  Google Scholar 

  11. 11

    Komiya, S., Albright, T. A., Hoffmann, R. & Kochi, J. K. Reductive elimination and isomerization of organogold complexes—theoretical studies of trialkylgold species as reactive intermediates. J. Am. Chem. Soc. 98, 7255–7265 (1976)

    CAS  Google Scholar 

  12. 12

    Tamaki, A. & Kochi, J. K. Oxidative addition in coupling of alkylgold(I) with alkyl-halides. J. Organometall. Chem. 64, 411–425 (1974)

    CAS  Google Scholar 

  13. 13

    Hashmi, A. S. K. Homogeneous catalysis by gold. Gold Bull. 37, 51–65 (2004)

    CAS  Google Scholar 

  14. 14

    Hashmi, A. S. K. Homogeneous gold catalysts and alkynes: A successful liaison. Gold Bull. 36, 3–9 (2003)

    CAS  Google Scholar 

  15. 15

    Fukuda, Y., Utimoto, K. & Nozaki, H. Preparation of 2,3,4,5-tetrahydropyridines from 5-alkynylamines under the catalytic action of Au(III). Heterocycles 25, 297–300 (1987)

    CAS  Google Scholar 

  16. 16

    Asao, N., Takahashi, K., Lee, S., Kasahara, T. & Yamamoto, Y. AuCl3-catalyzed benzannulation: Synthesis of naphthyl ketone derivatives from o-alkynylbenzaldehydes with alkynes. J. Am. Chem. Soc. 124, 12650–12651 (2002)

    CAS  PubMed  Google Scholar 

  17. 17

    Hashmi, A. S. K., Frost, T. M. & Bats, J. W. Highly selective gold-catalyzed arene synthesis. J. Am. Chem. Soc. 122, 11553–11554 (2000)

    CAS  Google Scholar 

  18. 18

    Hashmi, A. S. K., Schwarz, L., Choi, J.-H. & Frost, T. M. A new gold-catalyzed C–C bond formation. Angew. Chem. Int. Ed. 39, 2285–2288 (2000)

    CAS  Google Scholar 

  19. 19

    Fukuda, Y. & Utimoto, K. Effective transformation of unactivated alkynes into ketones or acetals by means of Au(III) catalyst. J. Org. Chem. 56, 3729–3731 (1991)

    CAS  Google Scholar 

  20. 20

    Yao, X. & Li, C. J. Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminal alkynes with ortho-alkynylaryl aldehyde. Org. Lett. 8, 1953–1955 (2006)

    CAS  PubMed  Google Scholar 

  21. 21

    Arcadi, A., Bianchi, G., Di Giuseppe, S. & Marinelli, F. Gold catalysis in the reactions of 1,3-dicarbonyls with nucleophiles. Green Chem. 5, 64–67 (2003)

    CAS  Google Scholar 

  22. 22

    Teles, J. H., Brode, S. & Chabanas, M. Cationic gold(I) complexes: Highly efficient catalysts for the addition of alcohols to alkynes. Angew. Chem. Int. Ed. 37, 1415–1418 (1998)

    CAS  Google Scholar 

  23. 23

    Kennedy-Smith, J. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed Conia-ene reaction of beta-ketoesters with alkynes. J. Am. Chem. Soc. 126, 4526–4527 (2004)

    CAS  PubMed  Google Scholar 

  24. 24

    Staben, S. T., Kennedy-Smith, J. J. & Toste, F. D. Gold-catalyzed 5-endo-dig carbocyclization of acetylenic dicarbonyl compounds. Angew. Chem. Int. Ed. 43, 5350–5352 (2004)

    CAS  Google Scholar 

  25. 25

    Reetz, M. T. & Sommer, K. Gold-catalyzed hydroarylation of alkynes. Eur. J. Org. Chem. 2003, 3485–3496 (2003)

    Google Scholar 

  26. 26

    Nevado, C. & Echavarren, A. M. Intramolecular hydroarylation of alkynes catalyzed by platinum or gold: Mechanism and endo selectivity. Chem. Eur. J. 11, 3155–3164 (2005)

    CAS  PubMed  Google Scholar 

  27. 27

    Ferrer, C. & Echavarren, A. M. Gold-catalyzed intramolecular reaction of indoles with alkynes: Facile formation of eight-membered rings and an unexpected allenylation. Angew. Chem. Int. Ed. 45, 1105–1109 (2006)

    CAS  Google Scholar 

  28. 28

    Antoniotti, S., Genin, E., Michelet, W. & Genet, J. P. Highly efficient access to strained bicyclic ketals via gold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc. 127, 9976–9977 (2005)

    CAS  PubMed  Google Scholar 

  29. 29

    Buzas, A. & Gagosz, F. Gold(I)-catalyzed formation of 4-alkylidene-1,3-dioxolan-2-ones from propargylic tert-butyl carbonates. Org. Lett. 8, 515–518 (2006)

    CAS  PubMed  Google Scholar 

  30. 30

    Mizushima, E., Hayashi, T. & Tanaka, M. Au(I)-catalyzed highly efficient intermolecular hydroamination of alkynes. Org. Lett. 5, 3349–3352 (2003)

    CAS  PubMed  Google Scholar 

  31. 31

    Zhang, L. M. Tandem Au-catalyzed 3,3-rearrangement-[2 + 2] cycloadditions of propargylic esters: Expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. J. Am. Chem. Soc. 127, 16804–16805 (2005)

    CAS  PubMed  Google Scholar 

  32. 32

    Suhre, M. H., Reif, M. & Kirsch, S. F. Gold(I)-catalyzed synthesis of highly substituted furans. Org. Lett. 7, 3925–3927 (2005)

    CAS  PubMed  Google Scholar 

  33. 33

    Morita, N. & Krause, N. The first gold-catalyzed C–S bond formation: Cycloisomerization of alpha-thioallenes to 2,5-dihydrothiophenes. Angew. Chem. Int. Ed. 45, 1897–1899 (2006)

    CAS  Google Scholar 

  34. 34

    Zhang, J. L., Yang, C. G. & He, C. Gold(I)-catalyzed intra- and intermolecular hydroamination of unactivated olefins. J. Am. Chem. Soc. 128, 1798–1799 (2006)

    CAS  PubMed  Google Scholar 

  35. 35

    Yao, X. & Li, C. J. Highly efficient addition of activated methylene compounds to alkenes catalyzed by gold and silver. J. Am. Chem. Soc. 126, 6884–6885 (2004)

    CAS  PubMed  Google Scholar 

  36. 36

    Brouwer, C. & He, C. Efficient gold-catalyzed hydroamination of 1,3-dienes. Angew. Chem. Int. Ed. 45, 1744–1747 (2006)

    CAS  Google Scholar 

  37. 37

    Nguyen, R. V., Yao, X. & Li, C. J. Highly efficient gold-catalyzed atom-economical annulation of phenols with dienes. Org. Lett. 8, 2397–2399 (2006)

    CAS  PubMed  Google Scholar 

  38. 38

    Rosenfeld, D. C., Shekhar, S., Takemiya, A., Utsunomiya, M. & Hartwig, J. F. Hydroamination and hydroalkoxylation catalyzed by triflic acid. Parallels to reactions initiated with metal triflates. Org. Lett. 8, 4179–4182 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Li, Z. et al. Bronsted acid catalyzed addition of phenols, carboxylic acids, and tosylamides to simple olefins. Org. Lett. 8, 4175–4178 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Schwerdtfeger, P., Boyd, P. D. W., Burrell, A. K., Robinson, W. T. & Taylor, M. J. Relativistic effects in gold chemistry. 3. Gold(I) complexes. Inorg. Chem. 29, 3593–3607 (1990)

    CAS  Google Scholar 

  41. 41

    Hertwig, R. H. et al. A comparative computational study of cationic coinage metal-ethylene complexes (C2H4)M+ (M = Cu, Ag, and Au). J. Phys. Chem. 100, 12253–12260 (1996)

    CAS  Google Scholar 

  42. 42

    Nechaev, M. S., Rayon, V. M. & Frenking, G. Energy partitioning analysis of the bonding in ethylene and acetylene complexes of Group 6, 8, and 11 metals: (CO)(5)TM-C2Hx and Cl4TM-C2Hx (TM = Cr, Mo, W), (CO)(4)TM-C2Hx (TM = Fe, Ru, Os), and TM+-C2Hx (TM = Cu, Ag, Au). J. Phys. Chem. A 108, 3134–3142 (2004)

    CAS  Google Scholar 

  43. 43

    Fleming, I. Frontier Orbitals and Organic Chemical Reactions (Wiley, Chichester, 1976)

    Google Scholar 

  44. 44

    Cinellu, M. A. et al. Reactions of gold(III) oxo complexes with cyclic alkenes. Angew. Chem. Int. Ed. 44, 6892–6895 (2005)

    CAS  Google Scholar 

  45. 45

    Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. Gold catalysis: Mild conditions for the synthesis of oxazoles from N-propargylcarboxamides and mechanistic aspects. Org. Lett. 6, 4391–4394 (2004)

    CAS  PubMed  Google Scholar 

  46. 46

    Nevado, C. & Echavarren, A. M. Transition metal-catalyzed hydroarylation of alkynes. Synthesis 167–182 (2005)

  47. 47

    Sromek, A. W., Rubina, M. & Gevorgyan, V. 1,2-Halogen migration in haloallenyl ketones: Regiodivergent synthesis of halofurans. J. Am. Chem. Soc. 127, 10500–10501 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Straub, B. F. Gold(I) or gold(III) as active species in AuCl3-catalyzed cyclization/cycloaddition reactions? A DFT study. Chem. Commun. 1726–1728 (2004)

  49. 49

    Markham, J. P., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed ring expansion of cyclopropanols and cyclobutanols. J. Am. Chem. Soc. 127, 9708–9709 (2005)

    CAS  PubMed  Google Scholar 

  50. 50

    Zhang, Z. et al. Highly active Au(I) catalyst for the intramolecular exo-hydrofunctionalization of allenes with carbon, nitrogen, and oxygen nucleophiles. J. Am. Chem. Soc. 128, 9066–9073 (2006)

    CAS  PubMed  Google Scholar 

  51. 51

    Marion, N., Díez-González, S., de Frémont, P., Noble, A. R. & Nolan, S. P. AuI-catalyzed tandem [3,3] rearrangement–intramolecular hydroarylation: Mild and efficient formation of substituted indenes. Angew. Chem. Int. Edn 45, 3647–3650 (2006)

    CAS  Google Scholar 

  52. 52

    Sherry, B. D. & Toste, F. D. Gold(I)-catalyzed propargyl Claisen rearrangement. J. Am. Chem. Soc. 126, 15978–15979 (2004)

    CAS  PubMed  Google Scholar 

  53. 53

    Hashmi, A. S. K., Weyrauch, J. P., Rudolph, M. & Kurpejovic, E. Gold catalysis: the benefits of N and N,O ligands. Angew. Chem. Int. Ed. 43, 6545–6547 (2004)

    CAS  Google Scholar 

  54. 54

    Zhou, C. Y., Chan, P. W. H. & Che, C. M. Gold(III) porphyrin-catalyzed cycloisomerization of allenones. Org. Lett. 8, 325–328 (2006)

    CAS  PubMed  Google Scholar 

  55. 55

    Irikura, K. K. & Goddard, W. A. Energetics of third-row transition metal methylidene ions MCH2+ (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc. 116, 8733–8740 (1994)

    CAS  Google Scholar 

  56. 56

    Heinemann, C., Hertwig, R. H., Wesendrup, R., Koch, W. & Schwarz, H. Relativistic effects on bonding in cationic transition-metal–carbene complexes—a density-functional study. J. Am. Chem. Soc. 117, 495–500 (1995)

    CAS  Google Scholar 

  57. 57

    Barysz, M. & Pyykkö, P. Strong chemical bonds to gold. High level correlated relativistic results for diatomic AuBe+, AuC+, AgMg+, and AuSi+. Chem. Phys. Lett. 285, 398–403 (1998)

    ADS  CAS  Google Scholar 

  58. 58

    Aguirre, F., Husband, J., Thompson, C. J. & Metz, R. B. Gas-phase photodissociation of AuCH2+: the dissociation threshold of jet-cooled and rotationally thermalized ions. Chem. Phys. Lett. 318, 466–470 (2000)

    ADS  CAS  Google Scholar 

  59. 59

    Xu, Q., Imamura, Y., Fujiwara, M. & Souma, Y. A new gold catalyst: Formation of gold(I) carbonyl, [Au(CO)n]+ (n = 1, 2), in sulfuric acid and its application to carbonylation of olefins. J. Org. Chem. 62, 1594–1598 (1997)

    CAS  Google Scholar 

  60. 60

    Chatt, J. & Duncanson, L. A. Olefin co-ordination compounds. 3. Infra-red spectra and structure—attempted preparation of acetylene complexes. J. Chem. Soc. 2939–2947 (1953)

  61. 61

    Dewar, J. S. A review of the pi-complex theory. Bull. Soc. Chim. Fr. 18, C71–C79 (1951)

    Google Scholar 

  62. 62

    deFremont, P., Scott, N. M., Stevens, E. D. & Nolan, S. P. Synthesis and structural characterization of N-heterocyclic carbene gold(I) complexes. Organometallics 24, 2411–2418 (2005)

    CAS  Google Scholar 

  63. 63

    Raubenheimer, H. G., Esterhuysen, M. W., Timoshkin, A., Chen, Y. & Frenking, G. Electrophilic addition of Ph3PAu+ to anionic alkoxy Fischer-type carbene complexes: A novel approach to metal-stabilized bimetallic vinyl ether complexes. Organometallics 21, 3173–3181 (2002)

    CAS  Google Scholar 

  64. 64

    Nakamura, I., Sato, T. & Yamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: Synthesis of 2,3-disubstituted benzothiophenes from (alpha-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed. 45, 4473–4475 (2006)

    CAS  Google Scholar 

  65. 65

    Dube, P. & Toste, F. D. Synthesis of indenyl ethers by gold(I)-catalyzed intramolecular carboalkoxylation of alkynes. J. Am. Chem. Soc. 128, 12062–12063 (2006)

    CAS  PubMed  Google Scholar 

  66. 66

    Nieto-Oberhuber, C. et al. Gold(I)-catalyzed cyclizations of 1,6-enynes: Alkoxycyclizations and exo/endo skeletal rearrangements. Chem. Eur. J. 12, 1677–1693 (2006)

    CAS  PubMed  Google Scholar 

  67. 67

    Nieto-Oberhuber, C. et al. Cationic gold(I) complexes: Highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. Angew. Chem. Int. Ed. 43, 2402–2406 (2004)

    CAS  Google Scholar 

  68. 68

    Mamane, V., Gress, T., Krause, H. & Fürstner, A. Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. J. Am. Chem. Soc. 126, 8654–8655 (2004)

    CAS  PubMed  Google Scholar 

  69. 69

    Luzung, M. R., Markham, J. P. & Toste, F. D. Catalaytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. J. Am. Chem. Soc. 126, 10858–10859 (2004)

    CAS  PubMed  Google Scholar 

  70. 70

    Zhang, L. & Kozmin, S. A. Gold-catalyzed assembly of heterobicyclic systems. J. Am. Chem. Soc. 127, 6962–6963 (2005)

    CAS  PubMed  Google Scholar 

  71. 71

    Fürstner, A., Stelzer, F. & Szillat, H. Platinum-catalyzed cycloisomerization reactions of enynes. J. Am. Chem. Soc. 123, 11863–11869 (2001)

    PubMed  Google Scholar 

  72. 72

    Mendez, M., Mamane, V. & Fürstner, A. Platinum-catalyzed skeletal rearrangement reactions: Generating structural diversity by a uniform mechanism. ChemTracts Org. Chem. 16, 397–425 (2003)

    CAS  Google Scholar 

  73. 73

    Fürstner, A. & Mamane, V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction. J. Org. Chem. 67, 6264–6267 (2002)

    PubMed  Google Scholar 

  74. 74

    Chatani, N., Inoue, H., Kotsuma, T. & Murai, S. Skeletal reorganization of enynes to 1-vinylcycloalkenes catalyzed by GaCl3 . J. Am. Chem. Soc. 124, 10294–10295 (2002)

    CAS  PubMed  Google Scholar 

  75. 75

    Mamane, V., Hannen, P. & Fürstner, A. Synthesis of phenanthrenes and polycyclic heteroarenes by transition-metal catalyzed cycloisomerization reactions. Chem. Eur. J. 10, 4556–4575 (2004)

    CAS  PubMed  Google Scholar 

  76. 76

    Christian, B. Electrophilic activation and cycloisomerization of enynes: A new route to functional cyclopropanes. Angew. Chem. Int. Ed. 44, 2328–2334 (2005)

    Google Scholar 

  77. 77

    Ma, S., Yu, S. & Gu, Z. Gold-catalyzed cyclization of enynes. Angew. Chem. Int. Ed. 45, 200–203 (2006)

    CAS  Google Scholar 

  78. 78

    Furstner, A., Davies, P. W. & Gress, T. Cyclobutenes by platinum-catalyzed cycloisomerization reactions of enynes. J. Am. Chem. Soc. 127, 8244–8245 (2005)

    PubMed  Google Scholar 

  79. 79

    Oi, S., Tsukamoto, I., Miyano, S. & Inoue, Y. Cationic platinum-complex-catalyzed skeletal reorganization of enynes. Organometallics 20, 3704–3709 (2001)

    CAS  Google Scholar 

  80. 80

    BhanuPrasad, B. A., Yoshimoto, F. K. & Sarpong, R. Pt-catalyzed pentannulations from in situ generated metallo-carbenoids utilizing propargylic esters. J. Am. Chem. Soc. 127, 12468–12469 (2005)

    CAS  Google Scholar 

  81. 81

    Ito, Y., Sawamura, M. & Hayashi, T. Catalytic asymmetric aldol reaction—reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. J. Am. Chem. Soc. 108, 6405–6406 (1986)

    CAS  Google Scholar 

  82. 82

    Munoz, M. P., Adrio, J., Carretero, J. C. & Echavarren, A. M. Ligand effects in gold- and platinum-catalyzed cyclization of enynes: Chiral gold complexes for enantioselective alkoxycyclization. Organometallics 24, 1293–1300 (2005)

    CAS  Google Scholar 

  83. 83

    Shi, X., Gorin, D. J. & Toste, F. D. Synthesis of 2-cyclopentenones by gold(I)-catalyzed Rautenstrauch rearrangement. J. Am. Chem. Soc. 127, 5802–5803 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Rautenstrauch, V. 2-Cyclopentenones from 1-ethynyl-2-propenyl acetates. J. Org. Chem. 49, 950–952 (1984)

    CAS  Google Scholar 

  85. 85

    Faza, O. N., Lopez, C. S., Alvarez, R. & de Lera, A. R. Mechanism of the gold(I)-catalyzed Rautenstrauch rearrangement: A center-to-helix-to-center chirality transfer. J. Am. Chem. Soc. 128, 2434–2437 (2006)

    PubMed  Google Scholar 

  86. 86

    Fehr, C. & Galindo, J. Synthesis of (-)-cubebol by face-selective platinum-, gold-, or copper-catalyzed cycloisomerization: Evidence for chirality transfer. Angew. Chem. Int. Edn 45, 2901–2904 (2006)

    CAS  Google Scholar 

  87. 87

    Furstner, A. & Hannen, P. Carene terpenoids by gold-catalyzed cycloisomerization reactions. Chem. Commun. 2546–2547 (2004)

  88. 88

    Furstner, A. & Hannen, P. Platinum- and gold-catalyzed rearrangement reactions of propargyl acetates: Total syntheses of (-)-alpha-cubebene, (-)-cubebol, sesquicarene and related terpenes. Chem. Eur. J. 12, 3006–3019 (2006)

    PubMed  Google Scholar 

  89. 89

    Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005)

    CAS  PubMed  Google Scholar 

  90. 90

    Miki, K., Ohe, K. & Uemura, S. A new ruthenium-catalyzed cyclopropanation of alkenes using propargylic acetates as a precursor of vinylcarbenoids. Tetrahedr. Lett. 44, 2019–2022 (2003)

    CAS  Google Scholar 

  91. 91

    Gorin, D. J., Davis, N. R. & Toste, F. D. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. J. Am. Chem. Soc. 127, 11260–11261 (2005)

    CAS  PubMed  Google Scholar 

  92. 92

    Hashmi, A. S. K., Blanco, M. C., Kurpejovic, E., Frey, W. & Bats, J. W. Gold catalysis: First applications of cationic binuclear gold(I) complexes and the first intermolecular reaction of an alkyne with a furan. Adv. Synth. Catal. 348, 709–713 (2006)

    CAS  Google Scholar 

  93. 93

    Fructos, M. R. et al. A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew. Chem. Int. Ed. 44, 5284–5288 (2005)

    CAS  Google Scholar 

  94. 94

    Hoffmann-Roder, A. & Krause, N. The golden gate to catalysis. Org. Biomol. Chem. 3, 387–391 (2005)

    PubMed  Google Scholar 

  95. 95

    Hashmi, A. S. K. The catalysis gold rush: New claims. Angew. Chem. Int. Ed. 44, 6990–6993 (2005)

    CAS  Google Scholar 

  96. 96

    Pitzer, K. S. Relativistic effects on chemical properties. Acc. Chem. Res. 12, 272–276 (1979)

    Google Scholar 

  97. 97

    Pyykkö, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Google Scholar 

  98. 98

    Norrby, L. J. Why is mercury liquid—or, why do relativistic effects not get into chemistry textbooks?. J. Chem. Educ. 68, 110–113 (1991)

    CAS  Google Scholar 

  99. 99

    Bagus, P. S., Lee, Y. S. & Pitzer, K. S. Effects of relativity and of lanthanide contraction on atoms from hafnium to bismuth. Chem. Phys. Lett. 33, 408–411 (1975)

    ADS  CAS  Google Scholar 

  100. 100

    Desclaux, J. P. Relativistic Dirac–Fock expectation values for atoms with Z = 1 to Z = 120. Atom. Data Nucl. Data Tables 12, 311–406 (1973)

    ADS  CAS  Google Scholar 

Download references


We thank P. Pyykkö for discussions during the preparation of this manuscript. Funding from the University of California, Berkeley, NIHGMS, Merck Research Laboratories, Bristol-Myers Squibb, Amgen Inc., DuPont, GlaxoSmithKline, Eli Lilly & Co., Pfizer, AstraZeneca, Abbott, Boehringer Ingelheim, Novartis and Roche is gratefully acknowledged. D.J.G. is an ACS Organic Division predoctoral fellow.

Author information



Corresponding author

Correspondence to F. Dean Toste.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorin, D., Toste, F. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.