Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum nature of a strongly coupled single quantum dot–cavity system


Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode1,2, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot–cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity3,4,5 interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Positioning a photonic crystal cavity mode relative to a single buried QD.
Figure 2: Cross-correlation histogram and time-resolved photoluminescence from the QD–cavity system with Δ λ = 4.1 nm.
Figure 3: Characteristics of the strong-coupling regime in the spectral domain.
Figure 4: Characteristics of the strong-coupling regime in the time domain.


  1. 1

    Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Raimond, J. M., Brune, M. & Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    CAS  Article  Google Scholar 

  4. 4

    Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hennessy, K., Badolato, A., Petroff, P. M. & Hu, E. L. Positioning photonic crystal cavities to single InAs quantum dots. Photonics Nanostruct. Fund. Applic. 2, 65–72 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Strauf, S. et al. Frequency control of photonic crystal membrane resonators by monolayer deposition. Appl. Phys. Lett. 88, 043116 (2006)

    ADS  Article  Google Scholar 

  13. 13

    Kiraz, A. et al. Photon correlation spectroscopy of a single quantum dot. Phys. Rev. B 65, 161303 (2002)

    ADS  Article  Google Scholar 

  14. 14

    Childs, J. J., An, K., Otteson, M. S., Dasari, R. R. & Feld, M. S. Normal mode line shapes for atoms in standing-wave optical resonators. Phys. Rev. Lett. 77, 2901–2904 (1996)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  17. 17

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Andreani, L. C., Panzarini, G. & Gerard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 60, 13276–13279 (1999)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pau, S., Bjork, G., Jacobson, J., Cao, H. & Yamamoto, Y. Microcavity exciton-polariton splitting in the linear regime. Phys. Rev. B 51, 14437–14447 (1995)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Haroche, S. Fundamental Systems in Quantum Optics (Elsevier, New York, 1992)

    Google Scholar 

  21. 21

    Brune, M. et al. Quantum Rabi oscillation: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Imamoglu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge support by the Swiss National Research Foundation through the ‘Quantum Photonics NCCR’.

Author information



Corresponding author

Correspondence to A. Imamoğlu.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary figures

This file contains Supplementary figures S1-S2 with legends. (PDF 358 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hennessy, K., Badolato, A., Winger, M. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing