Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bipolar supercurrent in graphene

Abstract

Graphene—a recently discovered form of graphite only one atomic layer thick1—constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance2,3, which is now understood theoretically4,5, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e2/h (where e is the electron charge and h is Planck’s constant) at the charge neutrality (or Dirac) point2, have come as a surprise and remain to be explained5,6,7,8,9,10,11,12,13. Here we experimentally study the Josephson effect14 in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes15. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample characterization.
Figure 2: Josephson effect in graphene.
Figure 3: Bipolar supercurrent transistor behaviour and finite supercurrent at the Dirac point.
Figure 4: Magnetoconductance measurements.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  6. Fradkin, E. Critical-behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. Phys. Rev. B 33, 3263–3268 (1986)

    Article  ADS  CAS  Google Scholar 

  7. Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Hall transition — an alternative approach and exact results. Phys. Rev. B 50, 7526–7552 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Nersesyan, A. A., Tsvelik, A. M. & Wenger, F. Disorder effects in 2-dimensional d-wave superconductors. Phys. Rev. Lett. 72, 2628–2631 (1994)

    Article  ADS  CAS  Google Scholar 

  9. Altland, A., Simons, B. D. & Zirnbauer, M. R. Theories of low-energy quasi-particle states in disordered d-wave superconductors. Phys. Rep. 359, 283–354 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Katsnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157–160 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Nomura, K. & MacDonald, A. H. Quantum transport of massless Dirac fermions in graphene. Preprint available at 〈http://xxx.lanl.gov/abs/cond-mat/0606589〉 (2006)

  12. Aleiner, I. L. & Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 97, 236801 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Altland, A. Low energy theory of disordered graphene. Phys. Rev. Lett. 97, 236802 (2006)

    Article  ADS  Google Scholar 

  14. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962)

    Article  ADS  Google Scholar 

  15. Titov, M. & Beenakker, C. W. J. The Josephson effect in ballistic graphene. Phys. Rev. B 74, 041401(R) (2006)

    Article  ADS  Google Scholar 

  16. Degennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964)

    Article  ADS  CAS  Google Scholar 

  17. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, UK, 1995)

    Book  Google Scholar 

  20. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, Singapore, 1996)

    Google Scholar 

  21. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single-electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley & Sons, New York, 1982)

    Book  Google Scholar 

  23. Octavio, M., Tinkham, M., Blonder, G. E. & Klapwijk, T. M. Subharmonic energy-gap structure in superconducting constrictions. Phys. Rev. B 27, 6739–6746 (1983)

    Article  ADS  Google Scholar 

  24. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  25. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)

    Article  ADS  Google Scholar 

  26. Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time reversal symmetry breaking in graphene. Phys. Rev. Lett. 97, 196804 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Suzuura, H. & Ando, T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Phys. Rev. Lett. 89, 266603 (2002)

    Article  ADS  Google Scholar 

  28. McCann, E. et al. Weak localisation magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Geim, D. Jiang and K. Novoselov for help with device fabrication; L. Kouwenhoven for the use of experimental equipment, support and discussions; and C. Beenakker, J. van Dam, D. Esteve, T. Klapwijk, Y. Nazarov, G. Steele, B. Trauzettel, C. Urbina and B. van Wees for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubert B. Heersche or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

The file contains Supplementary Discussion about the effective time reversal symmetry breaking in graphene and additional references. (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heersche, H., Jarillo-Herrero, P., Oostinga, J. et al. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007). https://doi.org/10.1038/nature05555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05555

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing