Transformation of spin information into large electrical signals using carbon nanotubes

Abstract

Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain1,2. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized3,4 manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin–orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite–nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: LSMO–CNT–LSMO device.
Figure 2: First-principles calculations of device interfaces.
Figure 3: MR for a LSMO–CNT–LSMO device.
Figure 4: Temperature and bias dependence of peak MR.

References

  1. 1

    Žutić, I., Fabian, J. & das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

  2. 2

    Jonker, B. T. & Flatté, M. E. F. in Nanomagnetism (eds Mills, D. L. & Bland, J. A. C.) 227–272 (Elsevier, Amsterdam, 2006)

  3. 3

    Park, J.-H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998)

  4. 4

    Bowen, M. et al. Nearly total spin-polarization in La2/3Sr1/3MnO3 from tunnelling experiments. Appl. Phys. Lett. 82, 233–235 (2003)

  5. 5

    Datta, S. & Das, B. Electric analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

  6. 6

    Dresselhaus, M. S., Dresselhaus, G. & Avouris, Ph (eds) Carbon Nanotubes (Springer, Berlin, 2001)

  7. 7

    Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schönenberger, C. Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)

  8. 8

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

  9. 9

    Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004)

  10. 10

    Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004)

  11. 11

    Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999)

  12. 12

    Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005)

  13. 13

    Jensen, A., Hauptmann, J. R., Nygård, J. & Lindelof, P. E. Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys. Rev. B 72, 035419 (2005)

  14. 14

    Tombros, N., van der Molen, S. J. & van Wees, B. J. Separating spin and charge transport in single-wall carbon nanotubes. Phys. Rev. B 73, 233403 (2006)

  15. 15

    Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994)

  16. 16

    Jorgensen, H. I., Grove-Rasmussen, K., Novotny, T., Flensberg, K. & Lindelof, P. E. Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime. Phys. Rev. Lett. 96, 207003 (2006)

  17. 17

    Mieville, L., Wordledge, D., Geballe, T. H., Contreras, R. & Char, K. Transport across conducting ferromagnetic oxides/metal interfaces. Appl. Phys. Lett. 73, 1736–1739 (1998)

  18. 18

    Hueso, L. E. et al. Electrical transport between epitaxial manganites and carbon nanotubes. Appl. Phys. Lett. 88, 083120 (2006)

  19. 19

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlations effects. Phys. Rev. 140, 1133–1138 (1965)

  20. 20

    George, J. M. et al. Electrical spin injection in GaMnAs-based junctions. Mol. Phys. Rep. 40, 23–33 (2004)

  21. 21

    Fert, A., George, J. M., Jaffrès, H. & Mattana, R. Semiconductors between spin-polarized source and drain. IEEE Trans. Electron. Devices (special issue on spintronics) (in the press); preprint at 〈http://arxiv.org/abs/cond-mat/0612495〉 (2006).

  22. 22

    Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002)

  23. 23

    Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, 4790–4793 (2000)

  24. 24

    Rashba, E. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, 16267–16270 (2000)

  25. 25

    Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001)

  26. 26

    Smith, D. L. & Silver, R. N. Electrical spin injection into semiconductors. Phys. Rev. B 64, 045323 (2001)

  27. 27

    Mattana, R. et al. Electrical detection of spin accumulation in a p-type GaAs quantum well. Phys. Rev. Lett. 90, 166601 (2003)

  28. 28

    Bowen, M. et al. Spin-polarized tunnelling spectroscopy in tunnel junctions with half-metallic electrodes. Phys. Rev. Lett. 95, 137203 (2005)

  29. 29

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

  30. 30

    Ferrari, V., Pruneda, J. M. A. & Artacho, E. Density functionals and half-metallicity in La2/3Sr1/3MnO3 . Phys. Stat. Sol. a 203, 1437–1441 (2006)

Download references

Acknowledgements

We thank G. A. J. Amaratunga, M. Bibes, H. Bouchiat, L. Brey, M. R. Buitelaar, M. J. Calderón, S. N. Cha, M. Chhowalla, A. Cottet, H. Jaffrès, D.-J. Kang, T. Kontos, P. Seneor and N. A. Spaldin. This work was funded by the UK EPSRC, NERC, BNFL, The Royal Society, the Spanish MEC (J.M.P.), Donostia International Physics Center (E.A.) and the EU.

Author information

Correspondence to Neil D. Mathur.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure S1 with Legend and Supplementary Data (PDF 172 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hueso, L., Pruneda, J., Ferrari, V. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007). https://doi.org/10.1038/nature05507

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.