Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gut hormones and the regulation of energy homeostasis

Abstract

Food intake, energy expenditure and body adiposity are homeostatically regulated. Central and peripheral signals communicate information about the current state of energy balance to key brain regions, including the hypothalamus and brainstem. Hunger and satiety represent coordinated responses to these signals, which include neural and hormonal messages from the gut. In recent years our understanding of how neural and hormonal brain–gut signalling regulates energy homeostasis has advanced considerably. Gut hormones have various physiological functions that include specifically targeting the brain to regulate appetite. New research suggests that gut hormones can be used to specifically regulate energy homeostasis in humans, and offer a target for anti-obesity drugs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The pathways by which gut hormones regulate energy homeostasis.
Figure 2: A schematic diagram of the gastrointestinal tract illustrating where particular gut hormones are concentrated and their major putative functions.

References

  1. Farooqi, I. S. & O'Rahilly, S. Monogenic obesity in humans. Annu. Rev. Med. 56, 443–458 (2005).

    CAS  PubMed  Google Scholar 

  2. Halford, J. C. Pharmacotherapy for obesity. Appetite 46, 6–10 (2006).

    CAS  PubMed  Google Scholar 

  3. James, W. P. et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet 356, 2119–2125 (2000).

    CAS  PubMed  Google Scholar 

  4. Gelfand, E. V. & Cannon, C. P. Rimonabant: a cannabinoid receptor type 1 blocker for management of multiple cardiometabolic risk factors. J. Am. Coll. Cardiol. 47, 1919–1926 (2006).

    CAS  PubMed  Google Scholar 

  5. Wang, H., Dey, S. K. & Maccarrone, M. Jekyll and Hyde: two faces of cannabinoid signaling in male and female fertility. Endocr. Rev. 27, 427–448 (2006).

    CAS  PubMed  Google Scholar 

  6. Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    CAS  PubMed  Google Scholar 

  7. Badman, M. K. & Flier, J. S. The gut and energy balance: visceral allies in the obesity wars. Science 307, 1909–1914 (2005).

    ADS  CAS  PubMed  Google Scholar 

  8. Kojima, M. & Kangawa, K. Ghrelin: structure and function. Physiol. Rev. 85, 495–522 (2005).

    CAS  PubMed  Google Scholar 

  9. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    ADS  CAS  PubMed  Google Scholar 

  10. Theander-Carrillo, C. et al. Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest. 116, 1983–1993 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cummings, D. E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 89, 71–84 (2006).

    CAS  PubMed  Google Scholar 

  12. Dong, J. et al. Role of endogenous ghrelin in the hyperphagia of mice with streptozotocin-induced diabetes. Endocrinology 147, 2634–2642 (2006).

    CAS  PubMed  Google Scholar 

  13. Sun, Y., Asnicar, M., Saha, P. K., Chan, L. & Smith, R. G. Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 3, 379–386 (2006).

    CAS  PubMed  Google Scholar 

  14. Zorrilla, E. P. et al. Vaccination against weight gain. Proc. Natl Acad. Sci. USA (2006).

  15. Neary, N. M. et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 2832–2836 (2004).

    CAS  PubMed  Google Scholar 

  16. Wynne, K. et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J. Am. Soc. Nephrol. 16, 2111–2118 (2005).

    CAS  PubMed  Google Scholar 

  17. Murray, C. D. et al. Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study. Gut 54, 1693–1698 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nogueiras, R., Perez-Tilve, D., Wortley, K. E. & Tschop, M. Growth hormone secretagogue (ghrelin-) receptors — a complex drug target for the regulation of body weight. CNS Neurol. Disord. Drug Targets 5, 335–343 (2006).

    CAS  PubMed  Google Scholar 

  19. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    ADS  CAS  PubMed  Google Scholar 

  20. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neurosci. 9, 381–388 (2006).

    CAS  PubMed  Google Scholar 

  21. Zhang, J. V. et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310, 996–999 (2005).

    ADS  CAS  PubMed  Google Scholar 

  22. Gourcerol, G. et al. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Peptides 27, 2811–2819 (2006).

    CAS  PubMed  Google Scholar 

  23. Holst, B. et al. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology advance online publication, 7 September 2006 (doi:10.1210/en.2006-0933).

    Google Scholar 

  24. Nogueiras, R. et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology advance online publication, 28 September 2006 (doi:10.1210/en.2006-0915).

    Google Scholar 

  25. Batterham, R. L. et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    ADS  CAS  PubMed  Google Scholar 

  26. Tschop, M. et al. Physiology: does gut hormone PYY3–36 decrease food intake in rodents? Nature 430, 1 (2004).

    PubMed  Google Scholar 

  27. Halatchev, I. G., Ellacott, K. L., Fan, W. & Cone, R. D. Peptide YY3–36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology 145, 2585–2590 (2004).

    CAS  PubMed  Google Scholar 

  28. Abbott, C. R. et al. The importance of acclimatisation and habituation to experimental conditions when investigating the anorectic effects of gastrointestinal hormones in the rat. Int. J. Obes. (Lond.) 30, 288–292 (2006).

    CAS  Google Scholar 

  29. Adams, S. H., Won, W. B., Schonhoff, S. E., Leiter, A. B. & Paterniti, J. R. Effects of peptide YY3–36 on short-term food intake in mice are not affected by prevailing plasma ghrelin levels. Endocrinology 145, 4967–4975 (2004).

    CAS  PubMed  Google Scholar 

  30. Challis, B. G. et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3–36 . Proc. Natl Acad. Sci. USA 101, 4695–4700 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chelikani, P. K., Haver, A. C. & Reidelberger, R. D. Intravenous infusion of peptide YY3–36 potently inhibits food intake in rats. Endocrinology 146, 879–888 (2005).

    CAS  PubMed  Google Scholar 

  32. Cox, J. E. & Randich, A. Enhancement of feeding suppression by PYY3–36 in rats with area postrema ablations. Peptides 25, 985–989 (2004).

    CAS  PubMed  Google Scholar 

  33. Pittner, R. A. et al. Effects of PYY3–36 in rodent models of diabetes and obesity. Int. J. Obes. Relat. Metab. Disord. 28, 963–971 (2004).

    CAS  PubMed  Google Scholar 

  34. Moran, T. H. et al. Peptide YY3–36 inhibits gastric emptying and produces acute reductions in food intake in rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R384–R388 (2005).

    CAS  PubMed  Google Scholar 

  35. Abbott, C. R. et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY3–36 on food intake. Brain Res. 1043, 139–144 (2005).

    ADS  CAS  PubMed  Google Scholar 

  36. Boey, D. et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 49, 1360–1370 (2006).

    CAS  PubMed  Google Scholar 

  37. Batterham, R. L. et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006).

    CAS  PubMed  Google Scholar 

  38. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3–36 . N. Engl. J. Med. 349, 941–948 (2003).

    CAS  PubMed  Google Scholar 

  39. Korner, J. et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J. Clin. Endocrinol. Metab. 90, 359–365 (2005).

    CAS  PubMed  Google Scholar 

  40. le Roux, C. W. et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147, 3–8 (2006).

    ADS  CAS  PubMed  Google Scholar 

  41. Kim, B. J. et al. Peptide YY is secreted after oral glucose administration in a gender-specific manner. J. Clin. Endocrinol. Metab. 90, 6665–6671 (2005).

    CAS  PubMed  Google Scholar 

  42. Stock, S. et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J. Clin. Endocrinol. Metab. 90, 2161–2168 (2005).

    CAS  PubMed  Google Scholar 

  43. Halatchev, I. G. & Cone, R. D. Peripheral administration of PYY3–36 produces conditioned taste aversion in mice. Cell Metab. 1, 159–168 (2005).

    CAS  PubMed  Google Scholar 

  44. Chelikani, P. K., Haver, A. C. & Reidelberger, R. D. Dose-dependent effects of peptide YY3–36 on conditioned taste aversion in rats. Peptides advance online publication 6 September 2006 (doi:10.1016/j.peptides.2006.08.001).

    Google Scholar 

  45. Degen, L. et al. Effect of peptide YY3–36 on food intake in humans. Gastroenterology 129, 1430–1436 (2005).

    CAS  PubMed  Google Scholar 

  46. Scott, V., Kimura, N., Stark, J. A. & Luckman, S. M. Intravenous peptide YY3–36 and Y2 receptor antagonism in the rat: effects on feeding behaviour. J. Neuroendocrinol. 17, 452–457 (2005).

    CAS  PubMed  Google Scholar 

  47. Chelikani, P. K., Haver, A. C., Reeve, J. R., Keire, D. A. & Reidelberger, R. D. Daily, intermittent intravenous infusion of peptide YY3–36 reduces daily food intake and adiposity in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R298–R305 (2006).

    CAS  PubMed  Google Scholar 

  48. Bi, S. & Moran, T. H. Actions of CCK in the controls of food intake and body weight: lessons from the CCK-A receptor deficient OLETF rat. Neuropeptides 36, 171–181 (2002).

    CAS  PubMed  Google Scholar 

  49. Crawley, J. N. & Beinfeld, M. C. Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302, 703–706 (1983).

    ADS  CAS  PubMed  Google Scholar 

  50. West, D. B., Fey, D. & Woods, S. C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 246, R776–R787 (1984).

    CAS  PubMed  Google Scholar 

  51. West, D. B. et al. Infusion of cholecystokinin between meals into free-feeding rats fails to prolong the intermeal interval. Physiol. Behav. 39, 111–115 (1987).

    CAS  PubMed  Google Scholar 

  52. Moran, T. H. Cholecystokinin and satiety: current perspectives. Nutrition 16, 858–865 (2000).

    CAS  PubMed  Google Scholar 

  53. Greenough, A., Cole, G., Lewis, J., Lockton, A. & Blundell, J. Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiol. Behav. 65, 303–310 (1998).

    CAS  PubMed  Google Scholar 

  54. Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    CAS  PubMed  Google Scholar 

  55. Wynne, K. et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395 (2005).

    CAS  PubMed  Google Scholar 

  56. Katsuura, G., Asakawa, A. & Inui, A. Roles of pancreatic polypeptide in regulation of food intake. Peptides 23, 323–329 (2002).

    CAS  PubMed  Google Scholar 

  57. Batterham, R. L. et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88, 3989–3992 (2003).

    CAS  PubMed  Google Scholar 

  58. Asakawa, A. et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124, 1325–1336 (2003).

    CAS  PubMed  Google Scholar 

  59. Schmidt, P. T. et al. A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. J. Clin. Endocrinol. Metab. 90, 5241–5246 (2005).

    CAS  PubMed  Google Scholar 

  60. Whitehouse, F. et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care 25, 724–730 (2002).

    CAS  PubMed  Google Scholar 

  61. Ratner, R. et al. Adjunctive therapy with pramlintide lowers HbA1c without concomitant weight gain and increased risk of severe hypoglycemia in patients with type 1 diabetes approaching glycemic targets. Exp. Clin. Endocrinol. Diabetes 113, 199–204 (2005).

    CAS  PubMed  Google Scholar 

  62. Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature Med. 8, 738–742 (2002).

    CAS  PubMed  Google Scholar 

  63. Miyawaki, K. et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 14843–14847 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 27, 2628–2635 (2004).

    CAS  PubMed  Google Scholar 

  65. DeFronzo, R. A. et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005).

    CAS  PubMed  Google Scholar 

  66. Kendall, D. M. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–1091 (2005).

    CAS  PubMed  Google Scholar 

  67. Drucker, D. J. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nature Clin. Pract. Endocrinol. Metab. 1, 22–31 (2005).

    CAS  Google Scholar 

  68. Dakin, C. L. et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145, 2687–2695 (2004).

    CAS  PubMed  Google Scholar 

  69. Cohen, M. A. et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88, 4696–4701 (2003).

    CAS  PubMed  Google Scholar 

  70. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    CAS  PubMed  Google Scholar 

  71. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    CAS  PubMed  Google Scholar 

  72. Dakin, C. L. et al. Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am. J. Physiol. Endocrinol. Metab. 283, E1173–E1177 (2002).

    CAS  PubMed  Google Scholar 

  73. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) advance online publication 18 April 2006 (doi:10.1038/sj.ijo.0803344).

  74. Martin, N. M. et al. Pre-obese and obese agouti mice are sensitive to the anorectic effects of peptide YY3–36 but resistant to ghrelin. Int. J. Obes. Relat. Metab. Disord. 28, 886–893 (2004).

    CAS  PubMed  Google Scholar 

  75. Acuna-Goycolea, C. & van den Pol, A. N. Peptide YY3–36 inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J. Neurosci. 25, 10510–10519 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nature Neurosci. 8, 571–578 (2005).

    CAS  PubMed  Google Scholar 

  77. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY3–36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    ADS  CAS  PubMed  Google Scholar 

  78. Browning, K. N. & Travagli, R. A. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Physiol. (Lond.) 549, 775–785 (2003).

    CAS  Google Scholar 

  79. Chen, C. H. & Rogers, R. C. Peptide YY and the Y2 agonist PYY-(13-36) inhibit neurons of the dorsal motor nucleus of the vagus. Am. J. Physiol. 273, R213–R218 (1997).

    CAS  PubMed  Google Scholar 

  80. Koda, S. et al. The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    CAS  PubMed  Google Scholar 

  81. Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    CAS  PubMed  Google Scholar 

  82. le Roux, C. W. et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J. Clin. Endocrinol. Metab. 90, 4521–4524 (2005).

    CAS  PubMed  Google Scholar 

  83. Kuvshinoff, B. W., Rudnicki, M. & McFadden, D. W. The effect of SMS 201-995 on meal and CCK-stimulated peptide YY release. J. Surg. Res. 50, 425–429 (1991).

    CAS  PubMed  Google Scholar 

  84. Flanagan, D. E. et al. The influence of insulin on circulating ghrelin. Am. J. Physiol. Endocrinol. Metab. 284, E313–E316 (2003).

    CAS  PubMed  Google Scholar 

  85. Ueno, M., Carvalheira, J. B., Oliveira, R. L., Velloso, L. A. & Saad, M. J. Circulating ghrelin concentrations are lowered by intracerebroventricular insulin. Diabetologia 49, 2449–2452 (2006).

    CAS  PubMed  Google Scholar 

  86. Arafat, A. M. et al. Glucagon suppression of ghrelin secretion is exerted at hypothalamus–pituitary level. J. Clin. Endocrinol. Metab. 91, 3528–3533 (2006).

    CAS  PubMed  Google Scholar 

  87. Neary, N. M. et al. Peptide YY3–36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005).

    CAS  PubMed  Google Scholar 

  88. Talsania, T., Anini, Y., Siu, S., Drucker, D. J. & Brubaker, P. L. Peripheral exendin-4 and peptide YY3–36 synergistically reduce food intake through different mechanisms in mice. Endocrinology 146, 3748–3756 (2005).

    CAS  PubMed  Google Scholar 

  89. Besterman, H. S. et al. Gut hormones in tropical malabsorption. Br. Med. J. ii, 1252–1255 (1979).

    Google Scholar 

  90. Besterman, H. S. et al. Gut hormones in inflammatory bowel disease. Scand. J. Gastroenterol. 18, 845–852 (1983).

    CAS  PubMed  Google Scholar 

  91. Adrian, T. E. et al. Peptide YY abnormalities in gastrointestinal diseases. Gastroenterology 90, 379–384 (1986).

    CAS  PubMed  Google Scholar 

  92. Allen, J. M. et al. Effect of partial ileal bypass on the gut hormone responses to food in man. Digestion 28, 191–196 (1983).

    CAS  PubMed  Google Scholar 

  93. Borg, C. M. et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br. J. Surg. 93, 210–215 (2006).

    CAS  PubMed  Google Scholar 

  94. Chan, J. L., Mun, E. C., Stoyneva, V., Mantzoros, C. S. & Goldfine, A. B. Peptide YY levels are elevated after gastric bypass surgery. Obesity (Silver Spring) 14, 194–198 (2006).

    CAS  Google Scholar 

  95. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. S. Dhillo and N. M. Martin for their assistance with the preparation of this manuscript. K.G.M. is supported by Biotechnology and Biological Sciences Research Council New Investigator Award.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Stephen Bloom is Chief Scientific Officer, a director and a shareholder of Thiakis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murphy, K., Bloom, S. Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859 (2006). https://doi.org/10.1038/nature05484

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05484

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing