Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

‘Infotaxis’ as a strategy for searching without gradients


Chemotactic bacteria rely on local concentration gradients to guide them towards the source of a nutrient1. Such local cues pointing towards the location of the source are not always available at macroscopic scales because mixing in a flowing medium breaks up regions of high concentration into random and disconnected patches. Thus, animals sensing odours in air or water detect them only intermittently as patches sweep by on the wind or currents2,3,4,5,6. A macroscopic searcher must devise a strategy of movement based on sporadic cues and partial information. Here we propose a search algorithm, which we call ‘infotaxis’, designed to work under such conditions. Any search process can be thought of as acquisition of information on source location; for infotaxis, information plays a role similar to concentration in chemotaxis. The infotaxis strategy locally maximizes the expected rate of information gain. We demonstrate its efficiency using a computational model of odour plume propagation and experimental data on mixing flows7. Infotactic trajectories feature ‘zigzagging’ and ‘casting’ paths similar to those observed in the flight of moths8. The proposed search algorithm is relevant to the design of olfactory robots9,10,11, but the general idea of infotaxis can be applied more broadly in the context of searching with sparse information.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Typical infotactic trajectories.
Figure 2: Quantitative characterization of infotaxis searches.
Figure 3: Simulation of infotaxis using mixing flow experimental data7.


  1. Berg, B. C. Random Walks in Biology (Princeton Univ. Press, Princeton, 1993)

    Google Scholar 

  2. Payne, T. L., Birch, M. C. & Kennedy, M. C. (eds) Mechanisms in Insect Olfaction (Clarendon, Oxford, 1986)

    Google Scholar 

  3. Murlis, J., Elkinton, J. S. & Cardé, R. T. Odor plumes and how insects use them. Annu. Rev. Entomol. 37, 505–532 (1992)

    Article  Google Scholar 

  4. Dusenbery, D. B. Sensory Ecology: How Organisms Acquire and Respond to Information (Freeman, New York, 1992)

    Google Scholar 

  5. Mafra-Neto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994)

    ADS  CAS  Article  Google Scholar 

  6. Hansson, B. S. (ed.) Insect Olfaction (Springer, Berlin, 1999)

    Book  Google Scholar 

  7. Villermaux, E. & Duplat, J. Mixing as an aggregation process. Phys. Rev. Lett. 91, 184501 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Kennedy, J. S. Zigzagging and casting as a preprogrammed response to wind-borne odour: A review. Physiol. Entomol. 27, 58–66 (1983)

    Google Scholar 

  9. Russell, R. A. Odor Detection by Mobile Robots (World Scientific, Singapore, 1999)

    Book  Google Scholar 

  10. Webb, B. Robots in invertebrate neuroscience. Nature 417, 359–363 (2002)

    ADS  CAS  Article  Google Scholar 

  11. Marques, L. & de Almeida, A. Special issue on mobile robots olfaction. Auton. Robots 20, 183–287 (2006)

    Article  Google Scholar 

  12. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977)

    ADS  CAS  Article  Google Scholar 

  13. Ishida, H., Kagawa, Y., Nakamoto, T. & Moriizumi, T. Odor-source localization in the clean room by an autonomous mobile sensing system. Sens. Actuators B 33, 115–121 (1996)

    CAS  Article  Google Scholar 

  14. Kuwana, Y., Nagasawa, S., Shimoyama, I. & Kanzaki, R. Synthesis of the pheromone oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens. Bioelectron. 14, 195–202 (1999)

    CAS  Article  Google Scholar 

  15. Grasso, F. W., Consi, T. R., Mountain, D. C. & Atema, J. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges. Rob. Auton. Syst. 30, 115–131 (2000)

    Article  Google Scholar 

  16. Russell, R. A., Bab-Hadiashar, A., Shepherd, R. L. & Wallace, G. G. A comparison of reactive robot chemotaxis algorithms. Rob. Auton. Syst. 45, 83–97 (2003)

    Article  Google Scholar 

  17. Belanger, J. H. & Arbas, E. Behavioral strategies underlying pheromone-modulated flights in moths: Lessons from simulation studies. J. Comp. Physiol. A 183, 345–360 (1998)

    Article  Google Scholar 

  18. Li, W., Farrell, J. A. & Cardé, R. T. Tracking of fluid-advected odor plumes: strategies inspired by insect orientation to pheromone. Adapt. Behav. 9, 143–170 (2001)

    Article  Google Scholar 

  19. Farrell, J. A., Pang, S. & Li, W. Plume mapping via hidden Markov methods. IEEE Trans. Syst. Man Cybern. B 33, 850–863 (2003)

    CAS  Article  Google Scholar 

  20. Farrell, J. A., Pang, S. & Li, W. Chemical plume tracing via an autonomous underwater vehicle. IEEE J. Ocean. Eng. 30, 428–442 (2005)

    ADS  Article  Google Scholar 

  21. Ishida, H., Nakayama, G., Nakamoto, T. & Moriizumi, T. Controlling a gas/odor plume-tracking robot based on transient responses of gas sensors. IEEE Sensors J. 5, 537–545 (2005)

    ADS  CAS  Article  Google Scholar 

  22. Murlis, J. & Jones, C. D. Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6, 71–86 (1981)

    Article  Google Scholar 

  23. Shraiman, B. I. & Siggia, E. D. Scalar turbulence. Nature 405, 639–646 (2000)

    ADS  CAS  Article  Google Scholar 

  24. Falkovich, G., Gawędzki, K. & Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  25. Pang, S. & Farrell, J. A. Chemical plume source localization. IEEE Trans. Syst. Man Cybern. B (in the press).

  26. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423. 623–656 (1948)

    MathSciNet  Article  Google Scholar 

  27. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Series in Telecommunication, Wiley, New York, 1991)

    Book  Google Scholar 

  28. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, Massachusetts, 1998)

    MATH  Google Scholar 

  29. Balkovsky, E. & Shraiman, B. I. Olfactory search at high Reynolds number. Proc. Natl Acad. Sci. USA 99, 12589–12593 (2002)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  30. Kaupp, U. B. et al. The signal flow and motor response controlling chemotaxis of sea urchin sperm. Nature Cell Biol. 5, 109–117 (2003)

    CAS  Article  Google Scholar 

Download references


This work was done during the visits of M.V. and E.V. to KITP, and was supported by the ARO. E.V. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Boris I. Shraiman.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figure 1 and additional references. (PDF 231 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vergassola, M., Villermaux, E. & Shraiman, B. ‘Infotaxis’ as a strategy for searching without gradients. Nature 445, 406–409 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing