Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide atlas of gene expression in the adult mouse brain

Abstract

Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global analysis strategy.
Figure 2: Genome-wide analysis of expression level versus percentage of expressing cells across the entire brain.
Figure 3: Representative cell-type-specific genes and corresponding molecular functions.
Figure 4: Hierarchical ranking and clustering of the most specific genes in 12 major brain regions.
Figure 5: Correlative analysis of gene expression.
Figure 6: Laminar and region-specific neocortical gene expression.
Figure 7: Heterogeneity of hippocampal gene expression.
Figure 8: Cerebellar compartments revealed by gene expression.
Figure 9: Subcellular mRNA targeting.

Similar content being viewed by others

References

  1. Zapala, M. A. et al. Adult mouse brain gene expression patterns bear an embryologic imprint. Proc. Natl Acad. Sci. USA 102, 10357–10362 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Datson, N. A., van der Perk, J., de Kloet, E. R. & Vreugdenhil, E. Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus 11, 430–444 (2001)

    Article  CAS  Google Scholar 

  3. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Siddiqui, A. S. et al. A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proc. Natl Acad. Sci. USA 102, 18485–18490 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003)

    Article  CAS  Google Scholar 

  6. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006)

    Article  CAS  Google Scholar 

  7. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)

    Article  CAS  Google Scholar 

  8. Toledo-Rodriguez, M., Goodman, P., Illic, M., Wu, C. & Markram, H. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J. Physiol. (Lond.) 567, 401–413 (2005)

    Article  CAS  Google Scholar 

  9. Monyer, H. & Markram, H. Interneuron diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004)

    Article  CAS  Google Scholar 

  10. Christiansen, J. H. et al. EMAGE: a spatial database of gene expression patterns during mouse embryo development. Nucleic Acids Res. 34, D637–D641 (2006)

    Article  CAS  Google Scholar 

  11. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Visel, A., Thaller, C. & Eichele, G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 32, D552–D556 (2004)

    Article  CAS  Google Scholar 

  13. Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Magdaleno, S. et al. BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4, e86 (2006)

    Article  Google Scholar 

  15. Boguski, M. S. & Jones, A. R. Neurogenomics: at the intersection of neurobiology and genome sciences. Nature Neurosci. 7, 429–433 (2004)

    Article  CAS  Google Scholar 

  16. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003)

    Article  Google Scholar 

  17. Kirkwood, A., Rioult, M. C. & Bear, M. F. Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381, 526–528 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Elias, C. F. et al. Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432, 1–19 (2001)

    Article  CAS  Google Scholar 

  19. Heuer, H. et al. Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119, 43–52 (2003)

    Article  CAS  Google Scholar 

  20. Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986)

    Article  CAS  Google Scholar 

  21. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. 1957. J. Neuropsychiatry Clin. Neurosci. 12, 103–113 (2000)

    Article  CAS  Google Scholar 

  22. Lorente de Nó, R. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. (Lpz.) 46, 113–177 (1934)

    Google Scholar 

  23. Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989)

    Article  CAS  Google Scholar 

  24. Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990)

    Article  CAS  Google Scholar 

  25. Tole, S., Christian, C. & Grove, E. A. Early specification and autonomous development of cortical fields in the mouse hippocampus. Development 124, 4959–4970 (1997)

    CAS  Google Scholar 

  26. Lein, E. S., Zhao, X. & Gage, F. H. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 24, 3879–3889 (2004)

    Article  CAS  Google Scholar 

  27. Yamagata, M., Sanes, J. R. & Weiner, J. A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003)

    Article  CAS  Google Scholar 

  28. Small, S. A. The longitudinal axis of the hippocampal formation: its anatomy, circuitry, and role in cognitive function. Rev. Neurosci. 13, 183–194 (2002)

    Article  Google Scholar 

  29. Moser, M. B. & Moser, E. I. Functional differentiation in the hippocampus. Hippocampus 8, 608–619 (1998)

    Article  CAS  Google Scholar 

  30. Bannerman, D. M. et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci. Biobehav. Rev. 28, 273–283 (2004)

    Article  CAS  Google Scholar 

  31. Voogd, J., Hess, D. & Marani, E. The Parasagittal Zonation of the Cerebellar Cortex in Cat and Monkey: Topography, Distribution of Acetylcholinesterase, and Development (ed. King, E. S.) (Liss, New York, 1987)

    Google Scholar 

  32. Herrup, K. & Kuemerle, B. The compartmentalization of the cerebellum. Annu. Rev. Neurosci. 20, 61–90 (1997)

    Article  CAS  Google Scholar 

  33. Hawkes, R. & Herrup, K. Aldolase C/zebrin II and the regionalization of the cerebellum. J. Mol. Neurosci. 6, 147–158 (1995)

    Article  CAS  Google Scholar 

  34. Gravel, C. & Hawkes, R. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J. Comp. Neurol. 291, 79–102 (1990)

    Article  CAS  Google Scholar 

  35. Blackshaw, S. & Snyder, S. H. Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J. Neurosci. 19, 3681–3690 (1999)

    Article  CAS  Google Scholar 

  36. Eberwine, J., Belt, B., Kacharmina, J. E. & Miyashiro, K. Analysis of subcellularly localized mRNAs using in situ hybridization, mRNA amplification, and expression profiling. Neurochem. Res. 27, 1065–1077 (2002)

    Article  CAS  Google Scholar 

  37. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996)

    Article  ADS  CAS  Google Scholar 

  38. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Burgin, K. E. et al. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 10, 1788–1798 (1990)

    Article  CAS  Google Scholar 

  40. Trapp, B. D. et al. Spatial segregation of mRNA encoding myelin-specific proteins. Proc. Natl Acad. Sci. USA 84, 7773–7777 (1987)

    Article  ADS  CAS  Google Scholar 

  41. Kindler, S., Wang, H., Richter, D. & Tiedge, H. RNA transport and local control of translation. Annu. Rev. Cell Dev. Biol. 21, 223–245 (2005)

    Article  CAS  Google Scholar 

  42. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002)

    Article  CAS  Google Scholar 

  44. Vavouri, T. & Elgar, G. Prediction of cis-regulatory elements using binding site matrices—the successes, the failures and the reasons for both. Curr. Opin. Genet. Dev. 15, 395–402 (2005)

    Article  CAS  Google Scholar 

  45. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005)

    Article  ADS  CAS  Google Scholar 

  46. Lechner, H. A., Lein, E. S. & Callaway, E. M. A genetic method for selective and quickly reversible silencing of Mammalian neurons. J. Neurosci. 22, 5287–5290 (2002)

    Article  CAS  Google Scholar 

  47. Yoshihara, Y. et al. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33–41 (1999)

    Article  CAS  Google Scholar 

  48. DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001)

    Article  ADS  CAS  Google Scholar 

  49. Brecht, M. et al. Novel approaches to monitor and manipulate single neurons in vivo. J. Neurosci. 24, 9223–9227 (2004)

    Article  CAS  Google Scholar 

  50. Ng, L. et al. Neuroinformatics for genome-wide 3-D gene expression mapping in the mouse brain. IEEE Trans. Comput. Biol. Bioinform. (in the press).

  51. Thompson, P. M. & Toga, A. W. in Handbook of Medical Imaging: Processing and Analysis (ed. Bankman, I. N.) (Academic Press, San Diego, 2000)

    Google Scholar 

  52. Viola, P. & Wells, W. M. Alignment by maximization of mutual information. Int. J. Comput. Vis. 24, 137–154 (1997)

    Article  Google Scholar 

  53. Chan, T. F. & Shen, J. Image Processing and Analysis: Variation, PDE, Wavelet, and Stochastic Methods (Society for Industrial and Applied Mathematics, Philadelphia, 2005)

    Book  Google Scholar 

  54. Lein, E. S., Callaway, E. M., Albright, T. D. & Gage, F. H. Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J. Comp. Neurol. 485, 1–10 (2005)

    Article  CAS  Google Scholar 

  55. Swanson, L. W. Brain Maps: Structure of the Rat Brain (Elsevier, Amsterdam, 2004)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Allen Institute for Brain Science. The authors wish to thank the Allen Institute founders, P. G. Allen and J. Patton, for their vision, encouragement and support. We also wish to thank key Institute advisors, K. Dooley and S. Coliton, as well as the Scientific Advisory Board for the Atlas project, M. Tessier-Lavigne, D. Anderson, C. Dulac, R. Gibbs, S. Paul, G. Schuler, A. W. Toga and J. Takahashi, for their scientific guidance and dedication to the successful execution of the Atlas project. We would particularly like to acknowledge D. Anderson for his role in the conceptual genesis and continual refinement of Atlas goals, as well as M. Tessier-Lavigne for key scientific and organizational leadership throughout the project. We also thank C. Jennings for his critical reading of the manuscript.

Author Contributions Neuroscience Group: E.S.L. (group leader), A.B., L.C., M.P.H., M.T.M, C.L.T., T.A.Z. Informatics Group: M.J.H. (group leader), C.L.K., C.L., L.L.N., S.D.P. Production Groups: Allen Institute for Brain Science: P.E.W. (group leader), S.M.S. (group leader), R.A.J. (group leader), M.A., A.F.B., E.J.B., S.D., N.R.D., A.L.D., T.D., E.D., M.J.D., J.G.D., A.J.E., L.K.E., S.R.F., S.N.G., K.J.G., K.R.H., M.R.H., J.M.K., R.H.K., J.H.L., T.A.L., L.T.L., R.J.M., N.F.M., R.N., G.J.O., T.H.P., S.E.P., O.C.P., R.B.P., Z.L.R., H.R.R., S.A.R., J.J.R., N.R.S., K.S., N.V.S., T.S., C.R.S., S.C.S., K.A.S., N.N.S., K.-R.S., L.R.V., R.M.W., C.K.W., V.Y.W., X.F.Y.; Baylor College of Medicine: C.T. (group leader), N.A., L.C. (Li Chen), T.-M.C., A.C., R.F., A.J.L., Y.L., M.J.R., A.T., M.W., M.B.Y., B.Z.; Max Planck Institute: G.E. (group leader), A.V. Technology Group: C.N.D. (group leader), C.D.T. (group leader), A.B. (Amy Bensinger), K.S.B., M.C.C., J.C., B.E.C., T.A.D., B.J.D., T.P.F., C.F. (Cliff Frensley), D.P.J., P.T.K., R.K., A.R.L., K.D.L., J.M., B.I.S., A.J.S., M.S., R.C.Y., B.L.Y. Other: H.-W.D., B.A.F., C.F. and J.J.M., Allen Reference Atlas generation; J.G.H., data annotation; C.C.O., critical review and manuscript preparation; M.S.B., overall project leadership 2003–2004; A.R.J., overall project leadership 2004–present.

Disclaimer The Nature Publishing Group has a business collaboration with the Allen Institute for the creation and maintenance of the Neuroscience gateway (http://www.brainatlas.org), but has no role in generating or curating the Allen Brain Atlas database content. As always, Nature Editors have been fully independent and solely responsible for the editorial content and peer review of this research article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ed S. Lein or Allan R. Jones.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplemental Methods 1

Detailed methodologies for tissue processing, probe design and generation, data generation, and image acquisition used for the Allen Brain Atlas project (PDF 1587 kb)

Supplemental Methods 2

Detailed methodologies for informatics-based image quantification and mapping of ISH data to a common 3D coordinate system for genome-wide analysis (DOC 25603 kb)

Supplemental Methods 3

Detailed methodologies used to generate the Allen Reference Atlas (PDF 559 kb)

Supplemental Methods 4

Description of methods used for voxel-based correlation analysis (DOC 41 kb)

Supplemental Data 1

Comparison of non-isotopic in situ hybridization (ISH) data generated for the Allen Brain Atlas project to comparable radioactive ISH data from other sources (DOC 2418 kb)

Supplemental Data 2

Side-by-side image comparison of non-isotopic in situ hybridization (ISH) data generated for the Allen Brain Atlas project to comparable radioactive ISH data. Accompanies Supplemental Data 1 (PDF 19230 kb)

Supplemental Data 3

Control data demonstrating the reproducibility of the ABA ISH platform across conditions and across the duration of the ABA project (PDF 4775 kb)

Supplemental Data 4

Comparison of expression patterns of the ligand-gated ion channel family to available literature and other data sources, as well as methodology for fine-detailed expert annotation of the ligand-gated ion channel family in the neocortex (DOC 412 kb)

Supplemental Data 5

Detailed expert annotation of the complete ligand-gated ion channel family in layers of the neocortex. Accompanies Supplemental Data 4 (XLS 44 kb)

Supplemental Figure 1

Genome-wide analysis of expression level vs. percentage of expressing cells in 12 major brain regions (JPG 840 kb)

Supplementary Table 1

Genes enriched in major cell populations in the brain (neurons, oligodendrocytes, astrocytes, and choroid plexus cells) identified through correlation-based searches seeded with cell-type specific gene expression patterns. Also included are genes with apparent ubiquity as well as genes that do not have detectable expression in the brain (XLS 184 kb)

Supplemental Table 2

Gene Ontology (GO) categories over-represented in genes enriched in major neural cell types and in genes that are either apparently ubiquitous or not expressed. Accompanies Supplemental Table 1 (XLS 612 kb)

Supplemental Table 3

Genes identified as the most specific for each of 12 different major brain regions (XLS 198 kb)

Supplemental Table 4

Genes displaying mRNA targeting to dendrites (neurons) or processes (non-neuronal cells) (XLS 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lein, E., Hawrylycz, M., Ao, N. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). https://doi.org/10.1038/nature05453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing