Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuOδ


High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping1,2 and appears to overlap with the superconducting phase. The archetypal electron-doped compound Nd2-xCexCuOδ (NCCO) shows bulk superconductivity above x ≈ 0.13 (refs 3, 4), while evidence for antiferromagnetic order has been found up to x ≈ 0.17 (refs 2, 5, 6). Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases7. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies8,9,10,11, arises from a build-up of spin correlations, in agreement with recent theoretical proposals12,13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The temperature–doping phase diagram for oxygen-reduced NCCO.
Figure 2: Representative two-axis scans used to measure the spin correlation length.
Figure 3: The temperature dependence of the spin correlation length at various cerium concentrations.
Figure 4: Spin stiffness, spin correlations at low-temperature, apparent Néel temperature, and spin correlations along T*.


  1. Keimer, B. et al. Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4 . Phys. Rev. B 46, 14034–14053 (1992)

    CAS  Article  Google Scholar 

  2. Matsuda, M. et al. Magnetic order, spin correlations, and superconductivity in single-crystal Nd2-xCexCuO4+δ.. Phys. Rev. B 45, 12548–12554 (1992)

    CAS  Article  Google Scholar 

  3. Takagi, H., Uchida, S. & Tokura, Y. Superconductivity produced by electron doping in CuO2-layered compounds. Phys. Rev. Lett. 62, 1197–1200 (1989)

    ADS  CAS  Article  Google Scholar 

  4. Uefuji, T. et al. Coexistence of antiferromagnetic ordering and high-Tc superconductivity in electron-doped superconductor Nd2-xCexCuO4 . Physica C 357–360, 208–211 (2001)

    ADS  Article  Google Scholar 

  5. Uefuji, T., Kurahashi, K., Fujita, M., Matsuda, M. & Yamada, K. Electron-doping effect on magnetic order and superconductivity in Nd2-xCexCuO4 single crystals. Physica C 378–381, 273–277 (2002)

    ADS  Article  Google Scholar 

  6. Mang, P. K., Vajk, O. P., Arvanitaki, A., Lynn, J. W. & Greven, M. Spin correlations and magnetic order in nonsuperconducting Nd2-xCexCuO4±δ . Phys. Rev. Lett. 93, 027002 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004)

    ADS  CAS  Article  Google Scholar 

  8. Armitage, N. P. et al. Doping dependence of an n-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 88, 257001 (2002)

    ADS  CAS  Article  Google Scholar 

  9. Onose, Y., Taguchi, Y., Ishizaka, K. & Tokura, Y. Charge dynamics in underdoped Nd2-xCexCuO4: Pseudogap and related phenomena. Phys. Rev. B 69, 024504 (2004)

    ADS  Article  Google Scholar 

  10. Matsui, H. et al. Angle-resolved photoemission spectroscopy of the antiferromagnetic superconductor Nd1. 87Ce0. 13CuO4: Anisotropic spin-correlation gap, pseudogap, and the induced quasiparticle mass enhancement. Phys. Rev. Lett. 94, 047005 (2005)

    ADS  CAS  Article  Google Scholar 

  11. Zimmers, A. et al. Infrared properties of electron-doped cuprates: Tracking normal-state gaps and quantum critical behavior in Pr2-xCexCuO4 . Europhys. Lett. 70, 225–231 (2005)

    ADS  CAS  Article  Google Scholar 

  12. Kyung, B., Hankevych, V., Daré, A.-M. & Tremblay, A.-M. S. Pseudogap and spin fluctuations in the normal state of the electron-doped cuprates. Phys. Rev. Lett. 93, 147004 (2004)

    ADS  CAS  Article  Google Scholar 

  13. Markiewicz, R. S. Mode-coupling model of Mott gap collapse in the cuprates: Natural phase boundary for quantum critical points. Phys. Rev. B 70, 174518 (2004)

    ADS  Article  Google Scholar 

  14. Vajk, O. P., Mang, P. K., Greven, M., Gehring, P. M. & Lynn, J. W. Quantum impurities in the two-dimensional spin one-half Heisenberg antiferromagnet. Science 295, 1691–1695 (2002)

    CAS  Article  Google Scholar 

  15. Yamada, K. et al. Commensurate spin dynamics in the superconducting state of an electron-doped cuprate superconductor. Phys. Rev. Lett. 90, 137004 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Motoyama, E. M. et al. Magnetic field effect on the superconducting magnetic gap of Nd1. 85Ce0. 15CuO4 . Phys. Rev. Lett. 96, 137002 (2006)

    ADS  CAS  Article  Google Scholar 

  17. Dagan, Y. et al. Origin of the anomalous low temperature upturn in the resistivity of the electron-doped cuprate superconductors. Phys. Rev. Lett. 94, 057005 (2005)

    ADS  CAS  Article  Google Scholar 

  18. Mang, P. K. et al. Phase decomposition and chemical inhomogeneity in Nd2-xCexCuO4±δ . Phys. Rev. B 70, 094507 (2004)

    ADS  Article  Google Scholar 

  19. Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006)

    ADS  CAS  Article  Google Scholar 

  20. Wang, Y. et al. Dependence of upper critical field and pairing strength on doping in cuprates. Science 299, 86–89 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Blumberg, G. et al. Nonmonotonic d x 2 - y 2 superconducting order parameter in Nd2-xCexCuO4 . Phys. Rev. Lett. 88, 107002 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Matsui, H. et al. Direct observation of a nonmonotonic d x 2 - y 2 -wave superconducting gap in the electron-doped high-Tc superconductor Pr0. 89LaCe0. 11CuO4 . Phys. Rev. Lett. 95, 017003 (2005)

    ADS  CAS  Article  Google Scholar 

  23. Aizenman, M. & Wehr, J. Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130, 489–528 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  24. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004)

    ADS  Article  Google Scholar 

Download references


We thank N. Bontemps, S. Chakravarty, S. A. Kivelson, R. S. Markiewicz and A.-M. S. Tremblay for discussions. The work at Stanford University was supported by grants from the Department of Energy and the National Science Foundation. E.M.M. acknowledges support through the NSF Graduate Fellowship programme.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Greven.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Motoyama, E., Yu, G., Vishik, I. et al. Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuOδ. Nature 445, 186–189 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing