Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A black hole in a globular cluster

Abstract

Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters1,2,3. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of 1,000 solar masses3. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters1,2. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 × 1039 erg s-1, which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The X-ray light curve of the globular cluster black hole candidate in NGC 4472.

References

  1. Kulkarni, S. R., Hut, P. & McMillan, S. Stellar black holes in globular clusters. Nature 364, 421–423 (1993)

    ADS  Article  Google Scholar 

  2. Sigurdsson, S. & Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993)

    ADS  Article  Google Scholar 

  3. Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002)

    ADS  CAS  Article  Google Scholar 

  4. Rhode, K. L. & Zepf, S. E. The globular cluster system in the outer regions of NGC 4472. Astron. J. 121, 210–224 (2001)

    ADS  Article  Google Scholar 

  5. Smits, M., Maccarone, T. J., Kundu, A. & Zepf, S. E. The globular cluster mass/low mass X-ray binary correlation: implications for kick velocity distributions from supernovae. Astron. Astrophys. 458, 477–484 (2006)

    ADS  CAS  Article  Google Scholar 

  6. Colbert, E. J. M. & Ptak, A. F. A catalog of candidate intermediate-luminosity X-ray objects. Astrophys. J. Suppl. Ser. 143, 25–45 (2002)

    ADS  Article  Google Scholar 

  7. Mushotzky, R. F., Cowie, L. L., Barger, A. J. & Arnaud, K. A. Resolving the extragalactic hard X-ray background. Nature 404, 459–464 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Williams, R. J., Pogge, R. W. & Mathur, S. Narrow-line Seyfert 1 galaxies from the Sloan Digital Sky Survey early data release. Astron. J. 124, 3042–3049 (2002)

    ADS  Article  Google Scholar 

  9. Maccacaro, T., Gioia, I. M., Wolter, A., Zamorani, G. & Stocke, J. T. The X-ray spectra of the extragalactic sources in the Einstein extended medium sensitivity survey. Astrophys. J. 326, 680–690 (1988)

    ADS  CAS  Article  Google Scholar 

  10. Angelini, L., Loewenstein, M. & Mushotzky, R. F. The X-ray globular cluster population in NGC 1399. Astrophys. J. 557, L35–L38 (2001)

    ADS  Article  Google Scholar 

  11. Kundu, A., Maccarone, T. J. & Zepf, S. E. The low-mass X-ray binary-globular cluster connection in NGC 4472. Astrophys. J. 574, L5–L9 (2002)

    ADS  Article  Google Scholar 

  12. Maccarone, T. J., Kundu, A. & Zepf, S. E. The low-mass X-ray binary-globular cluster connection. II. NGC 4472 X-ray source properties and source catalogs. Astrophys. J. 586, 814–825 (2003)

    ADS  Article  Google Scholar 

  13. Oosterbroek, T. et al. Spectral and timing behaviour of GS 2023+338. Astron. Astrophys. 321, 776–790 (1997)

    ADS  Google Scholar 

  14. Lee, J. C. et al. High-resolution Chandra HETGS and Rossi X-Ray Timing Explorer observations of GRS 1915+105: A hot disk atmosphere and cold gas enriched in iron and silicon. Astrophys. J. 567, 1102–1111 (2002)

    ADS  CAS  Article  Google Scholar 

  15. Kalogera, V., King, A. R. & Rasio, F. A. Could black hole X-ray binaries be detected in globular clusters?. Astrophys. J. 601, L171–L174 (2004)

    ADS  CAS  Article  Google Scholar 

  16. Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Slim accretion discs. Astrophys. J. 332, 646–658 (1988)

    ADS  Article  Google Scholar 

  17. Mukai, K., Pence, W. D., Snowden, S. L. & Kuntz, K. D. Chandra observation of luminous and ultraluminous X-ray binaries in M101. Astrophys. J. 582, 184–189 (2003)

    ADS  Article  Google Scholar 

  18. King, A. R. & Pounds, K. A. Black hole winds. Mon. Not. R. Astron. Soc. 345, 657–659 (2003)

    ADS  Article  Google Scholar 

  19. Zycki, P., Done, C. & Smith, D. A. The 1989 May outburst of the soft X-ray transient GS 2023+338 (V404 Cyg). Mon. Not. R. Astron. Soc. 309, 561–575 (1999)

    ADS  Article  Google Scholar 

  20. Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A catalogue of high mass X-ray binaries. Astron. Astrophys. Suppl. 147, 25–49 (2000)

    ADS  Article  Google Scholar 

  21. Truss, M. & Done, C. The decline and fall of GRS 1915+105: the end is nigh? Mon. Not. R. Astron. Soc. 368, L25–L29 (2006)

    ADS  Article  Google Scholar 

  22. Portegies Zwart, S. F., Dewi, J. & Maccarone, T. Intermediate mass black holes in accreting binaries: formation, evolution and observational appearance. Mon. Not. R. Astron. Soc. 355, 413–423 (2004)

    ADS  CAS  Article  Google Scholar 

  23. Blecha, L. et al. Close binary interactions of intermediate-mass black holes: Possible ultraluminous X-ray sources? Astrophys. J. 642, 427–437 (2006)

    ADS  CAS  Article  Google Scholar 

  24. Hopman, C., Portegies Zwart, S. & Alexander, T. Ultraluminous X-ray sources as intermediate-mass black holes fed by tidally captured stars. Astrophys. J. 604, L101–L104 (2004)

    ADS  CAS  Article  Google Scholar 

  25. Madhusudhan, N. et al. Models of ultraluminous X-ray sources with intermediate-mass black holes. Astrophys. J. 640, 918–922 (2006)

    ADS  CAS  Article  Google Scholar 

  26. Patruno, A., Colpi, M., Faulkner, A. & Possenti, A. Radio pulsars around intermediate-mass black holes in superstellar clusters. Mon. Not. R. Astron. Soc. 364, 344–352 (2005)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

K.L.R. is an NSF Astronomy and Astrophysics Postdoctoral Fellow. We thank E. Koerding, T. Dwelly, S. Jester, J. Salzer and G. Bergond for useful communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Maccarone.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maccarone, T., Kundu, A., Zepf, S. et al. A black hole in a globular cluster. Nature 445, 183–185 (2007). https://doi.org/10.1038/nature05434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05434

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing