Pheromonal communication in vertebrates

Abstract

Recent insights have revolutionized our understanding of the importance of chemical signals in influencing vertebrate behaviour. Previously unknown families of pheromonal signals have been identified that are expanding the traditional definition of a pheromone. Although previously regarded as functioning independently, the main olfactory and vomeronasal systems have been found to have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Studies using gene-targeted mice have revealed an unexpected diversity of chemosensory systems and their underlying cellular and molecular mechanisms. Future developments could show how the functions of the different chemosensory systems are integrated to regulate innate and learned behavioural and physiological responses to pheromones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The mouse olfactory system.
Figure 2: Both the MOE and VNO detect pheromonal ligands at low concentrations.
Figure 3: The Bruce effect, one of the best-known examples of olfactory imprinting in adult vertebrates.
Figure 4: The medial amygdala is an important hub that controls social behaviour.

References

  1. 1

    Karlson, P. & Lüscher, M. Pheromones: a new term for a class of biologically active substances. Nature 183, 55–56 (1959).

    ADS  CAS  Google Scholar 

  2. 2

    Schaal, B. et al. Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424, 68–72 (2003).

    ADS  CAS  Google Scholar 

  3. 3

    Novotny, M. V., Weidong, M., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B 266, 2017–2022 (1999).

    CAS  Google Scholar 

  4. 4

    Wyatt, T. D. Pheromones and Animal Behaviour (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  5. 5

    Yamazaki, K., Beauchamp, G. K., Curran, M. & Boyse, E. A. Parent–progeny recognition as a function of MHC odortype identity. Proc. Natl Acad. Sci. USA 97, 10500–10502 (2000).

    ADS  CAS  Google Scholar 

  6. 6

    Potts, W. K., Manning, C. J. & Wakeland, E. K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–621 (1991).

    ADS  CAS  Google Scholar 

  7. 7

    Wysocki, C. & Preti, G. Facts, fallacies, fears and frustrations with human pheromones. Anat. Rec. A 281, 1201–1211 (2004).

    Google Scholar 

  8. 8

    Lin, D. Y., Zhang, S.-Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kikuyama, S. et al. Sodefrin: a female-attracting peptide pheromone in newt cloacal glands. Science 267, 1643–1645 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Boehm, T. & Zufall, F. MHC peptides and the sensory evaluation of genotype. Trends Neurosci. 29, 100–107 (2006).

    CAS  Google Scholar 

  12. 12

    Leinders-Zufall, T. et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037 (2004).

    ADS  CAS  Google Scholar 

  13. 13

    Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001).

    ADS  CAS  Google Scholar 

  14. 14

    Morè, L. Mouse major urinary proteins trigger ovulation via the vomeronasal organ. Chem. Senses 31, 393–401 (2006).

    Google Scholar 

  15. 15

    Kimoto, H., Haga, S., Sato, K. & Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437, 898–901 (2005).

    ADS  CAS  Google Scholar 

  16. 16

    Sorensen, P. et al. Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nature Chem. Biol. 1, 324–328 (2005).

    CAS  Google Scholar 

  17. 17

    Dorries, K. M., Adkins, R. E. & Halpern, B. P. Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav. Evol. 49, 53–62 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31, 117–122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nature Neurosci. 5, 124–133 (2002).

    CAS  Google Scholar 

  20. 20

    Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 42, 645–650 (2006).

    ADS  Google Scholar 

  21. 21

    Halpern, M. & Martínez-Marcos, A. Structure and function of the vomeronasal system: an update. Prog. Neurobiol. 70, 245–318 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Rev. Neurosci. 4, 551–562 (2003).

    CAS  Google Scholar 

  23. 23

    Del Punta, K. et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419, 70–74 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lucas, P., Ukhanov, K., Leinders-Zufall, T. & Zufall, F. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40, 551–561 (2003).

    CAS  Google Scholar 

  25. 25

    Rodriguez, I., Del Punta, K., Rothman, A., Ishii, T. & Mombaerts, P. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nature Neurosci. 5, 134–140 (2002).

    CAS  Google Scholar 

  26. 26

    Yang, H., Shi, P., Zhang, Y. & Zhang, J. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86, 306–315 (2005).

    CAS  Google Scholar 

  27. 27

    Hansen, A., Anderson, K. & Finger, T. Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J. Comp. Neurol. 477, 347–359 (2004).

    CAS  Google Scholar 

  28. 28

    Pfister, P. & Rodriguez, I. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc. Natl Acad. Sci. USA 102, 5489–5494 (2005).

    ADS  CAS  Google Scholar 

  29. 29

    Eisthen, H. The goldfish knows: olfactory receptor cell morphology predicts receptor gene expression. J. Comp. Neurol. 477, 341–346 (2004).

    CAS  Google Scholar 

  30. 30

    Elsaesser, R., Montani, G., Tirindelli, R. & Paysan, J. Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur. J. Neurosci. 21, 2692–2700 (2005).

    Google Scholar 

  31. 31

    Meredith, M. Chronic recording of vomeronasal pump activation in awake behaving hamsters. Physiol. Behav. 56, 345–354 (1994).

    CAS  Google Scholar 

  32. 32

    Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Sam, M. et al. Odorants may arouse instinctive behaviours. Nature 412, 142 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Boschat, C. et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nature Neurosci. 5, 1261–1262 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sharrow, S., Vaughn, J., Zídek, L., Novotny, M. & Stone, M. Pheromone binding by polymorphic mouse major urinary proteins. Protein Sci. 11, 2247–2256 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Luo, M. M., Fee, M. S. & Katz, L. C. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Xu, F. et al. Simultaneous activation of the mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol. 489, 491–500 (2005).

    PubMed  PubMed Central  Google Scholar 

  38. 38

    Wysocki, C. J. & Lepri, J. L. Consequences of removing the vomeronasal organ. J. Steroid Biochem. Mol. Biol. 39, 661–669 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Leypold, B. G. et al. Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl Acad. Sci. USA 99, 6376–6381 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Kelliher, K., Spehr, M., Li, X.-H., Zufall, F. & Leinders-Zufall, T. Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur. J. Neurosci. 23, 3385–3390 (2006).

    Google Scholar 

  42. 42

    Hudson, R. & Distel, H. Pheromonal release of suckling in rabbits does not depend on the vomeronasal organ. Physiol. Behav. 37, 123–129 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Mandiyan, V., Coats, J. & Shah, N. Deficits in aggressive behaviors in Cnga2 mutant mice. Nature Neurosci. 8, 1660–1662 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hurst, J. & Beynon, R. Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26, 1288–1298 (2004).

    CAS  Google Scholar 

  45. 45

    Zufall, F. & Munger, S. From odor and pheromone transduction to the organization of the sense of smell. Trends Neurosci. 24, 191–193 (2001).

    CAS  Google Scholar 

  46. 46

    Ma, M. et al. Olfactory signal transduction in the mouse septal organ. J. Neurosci. 23, 317–324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Fuss, S., Omura, M. & Mombaerts, P. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur. J. Neurosci. 22, 2649–2654 (2005).

    Google Scholar 

  48. 48

    Jordan, W. C. & Bruford, M. W. New perspectives on mate choice and the MHC. Heredity 81, 127–133 (1998).

    CAS  Google Scholar 

  49. 49

    Boyse, E. A., Beauchamp, G. K. & Yamazaki, K. The genetics of body scent. Trends Genet. 3, 97–102 (1987).

    Google Scholar 

  50. 50

    Carroll, L. S., Penn, D. J. & Potts, W. K. Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues. Proc. Natl Acad. Sci. USA 99, 2187–2192 (2002).

    ADS  CAS  Google Scholar 

  51. 51

    Singh, P. B., Brown, R. E. & Roser, B. MHC antigens in urine as olfactory recognition cues. Nature 327, 161–164 (1987).

    ADS  CAS  Google Scholar 

  52. 52

    Singh, P. B. Chemosensation and genetic individuality. Reproduction 121, 529–539 (2001).

    ADS  CAS  Google Scholar 

  53. 53

    Schaefer, M. L., Yamazaki, K., Osada, K., Restrepo, D. & Beauchamp, G. K. Olfactory fingerprints for major histocompatibility complex-determined body odors II: relationship among odor maps, genetics, odor composition, and behavior. J. Neurosci. 22, 9513–9521 (2002).

    CAS  PubMed  Google Scholar 

  54. 54

    Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class 1b molecules. Cell 112, 607–618 (2003).

    CAS  Google Scholar 

  55. 55

    Ishii, T., Hirota, J. & Mombaerts, P. Combinational coexpression of neural and immune multigene families in mouse vomeronasal sensory systems. Curr. Biol. 13, 394–400 (2003).

    CAS  Google Scholar 

  56. 56

    Olson, R., Huey-Tubman, K., Dulac, C. & Bjorkman, P. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove. PLoS 3, e257 (2005).

    Google Scholar 

  57. 57

    Milinski, M. et al. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl Acad. Sci. USA 102, 4414–4418 (2005).

    ADS  CAS  Google Scholar 

  58. 58

    Flower, D. R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Armstrong, S., Robertson, D., Cheetham, S., Hurst, J. & Beynon, R. Structural and functional differences in isoforms of mouse major urinary proteins: a male-specific protein that preferentially binds a male pheromone. Biochem. J. 391, 343–350 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Beynon, R. et al. Polymorphism in major urinary proteins: molecular heterogeneity in a wild mouse population. J. Chem. Ecol. 28, 1429–1446 (2002).

    CAS  Google Scholar 

  61. 61

    Luo, M. & Katz, L. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14, 428–434 (2004).

    CAS  Google Scholar 

  62. 62

    Sugai, T., Sugitani, M. & Onoda, N. Subdivisions of the guinea pig accessory olfactory bulb revealed by the combined method with immunohistochemistry, electrophysiological, and optical recordings. Neuroscience 79, 871–885 (1997).

    CAS  Google Scholar 

  63. 63

    Boehm, U., Zou, Z. & Buck, L. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Yoon, H., Enquist, L. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–695 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Kaba, H. & Nakanishi, S. Synaptic mechanisms of olfactory recognition memory. Rev. Neurosci. 6, 125–141 (1995).

    CAS  Google Scholar 

  66. 66

    Halem, H. A., Cherry, J. A. & Baum, M. J. Central forebrain responses to familiar male odors are attenuated in recently mated female mice. Eur. J. Neurosci. 13, 389–399 (2001).

    CAS  Google Scholar 

  67. 67

    Binns, K. E. & Brennan, P. A. Changes in electrophysiological activity in the accessory olfactory bulb and medial amygdala associated with mate recognition in mice. Eur. J. Neurosci. 21, 2529–2537 (2005).

    CAS  Google Scholar 

  68. 68

    Yamazaki, K. et al. Familial imprinting determines H-2 selective mating preferences. Science 240, 1331–1332 (1988).

    ADS  CAS  Google Scholar 

  69. 69

    Penn, D. & Potts, W. MHC-disassortative mating preferences reversed by cross-fostering. Proc. R. Soc. Lond. B 265, 1299–1306 (1998).

    CAS  Google Scholar 

  70. 70

    Hudson, R. Do newborn rabbits learn the odor stimuli releasing nipple-search behavior? Dev. Psychobiol. 18, 575–585 (1985).

    CAS  Google Scholar 

  71. 71

    Moncho-Bogani, J., Martinez-Garcia, F., Novejarque, A. & Lanuza, E. Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. Eur. J. Neurosci. 21, 2186–2198 (2005).

    Google Scholar 

  72. 72

    Meredith, M. Vomeronasal, olfactory, hormonal convergence in the brain. Ann. NY Acad. Sci. 855, 349–361 (1998).

    ADS  CAS  Google Scholar 

  73. 73

    Mitchell, J. & Gratton, A. Opioid modulation and sensization of dopamine release elicited by sexually relevant stimuli: a high speed chronoamperometric study in freely behaving rats. Brain Res. 551, 20–27 (1991).

    CAS  Google Scholar 

  74. 74

    West, C., Clancy, A. & Michael, R. Enhanced responses of nucleus accumbens neurons in male rats to novel odors associated with sexually receptive females. Brain Res. 585, 49–55 (1992).

    CAS  Google Scholar 

  75. 75

    Kippin, T., Cain, S. & Pfaus, J. Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat. Neuroscience 117, 971–979 (2003).

    CAS  Google Scholar 

  76. 76

    Meredith, M. & Westberry, J. M. Distinctive responses in the medial amygdala to same-species and different-species pheromones. J. Neurosci. 24, 5719–5725 (2004).

    CAS  Google Scholar 

  77. 77

    Choi, G. B. et al. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46, 647–660 (2005).

    CAS  Google Scholar 

  78. 78

    Ferguson, J. N., Aldag, J. M., Insel, T. R. & Young, L. J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285 (2001).

    CAS  Google Scholar 

  79. 79

    Keller, M., Perrin, G., Meurisse, M., Ferreira, G. & Lévy, F. Cortical and medial amygdala are both involved in the formation of olfactory offspring memory in sheep. Eur. J. Neurosci. 20, 3433–3441 (2004).

    Google Scholar 

  80. 80

    Leyden, J., McGinley, K., Hölzle, E., Labows, J. & Kligman, A. The microbiology of the human axilla and its relationship to axillary odor. J. Invest. Dermatol. 77, 413–416 (1981).

    CAS  Google Scholar 

  81. 81

    Zeng, X.-N. et al. Analysis of characteristic odors from human male axillae. J. Chem. Ecol. 17, 1469–1492 (1991).

    CAS  Google Scholar 

  82. 82

    Zeng, C. et al. A human axillary odorant is carried by apolipoprotein D. Proc. Natl Acad. Sci. USA 93, 6626–6630 (1996).

    ADS  CAS  Google Scholar 

  83. 83

    Witt, M. & Hummel, T. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception? Int. Rev. Cytol. 248, 209–259 (2006).

    CAS  Google Scholar 

  84. 84

    Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses 26, 433–445 (2001).

    CAS  Google Scholar 

  85. 85

    Zhang, J. & Webb, D. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc. Natl Acad. Sci. USA 100, 8337–8341 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Liman, E. R. & Innan, H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc. Natl Acad. Sci. USA 100, 3328–3332 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Kouros-Mehr, H. et al. Identification of non-functional human VNO receptor genes provides evidence for vestigiality of the human VNO. Chem. Senses 26, 1167–1174 (2001).

    CAS  Google Scholar 

  88. 88

    Rodriguez, I. & Mombaerts, P. Novel human vomeronasal receptor-like genes reveal species-specific families. Curr. Biol. 12, R409–R411 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genet. 26, 18–19 (2000).

    CAS  Google Scholar 

  90. 90

    Stern, K. & McClintock, M. K. Regulation of ovulation by human pheromones. Nature 392, 177–179 (1998).

    ADS  CAS  Google Scholar 

  91. 91

    Preti, G., Wysocki, C., Barnhart, K., Sondheimer, S. & Leyden, J. Male axillary extracts contain pheromones that affect pulsatile secretion of luteinizing hormone and mood in women recipients. Biol. Reprod. 68, 2107–2113 (2003).

    CAS  Google Scholar 

  92. 92

    Wedekind, C. & Furi, S. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity? Proc. R. Soc. Lond. B 264, 1471–1479 (1997).

    ADS  CAS  Google Scholar 

  93. 93

    Jacob, S., McClintock, M. K., Zelano, B. & Ober, C. Paternally inherited HLA alleles are associated with women's choice of male odor. Nature Genet. 30, 175–179 (2002).

    CAS  Google Scholar 

  94. 94

    Ober, C. et al. HLA and mate choice in humans. Am. J. Hum. Genet. 61, 497–504 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Varendi, H. & Porter, R. H. Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta Paediatr. 90, 372–375 (2001).

    CAS  Google Scholar 

  96. 96

    Jacob, S. & McClintock, M. Pyschological state and mood effects of steroidal chemosignals in women and men. Horm. Behav. 37, 57–78 (2000).

    CAS  Google Scholar 

  97. 97

    Savic, I., Berglund, H., Gulyas, B. & Roland, P. Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron 31, 661–668 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Keverne, E. Odor here, odor there: chemosensation and reproductive function. Nature Neurosci. 8, 1637–1638 (2005).

    CAS  Google Scholar 

  99. 99

    Brennan, P. A., Kendrick, K. M. & Keverne, E. B. Neurotransmitter release in the accessory olfactory bulb during and after the formation of an olfactory memory in mice. Neuroscience 69, 1075–1086 (1995).

    CAS  Google Scholar 

  100. 100

    Pitkänen, A. in The Amygdala: a Functional Analysis (ed. Aggleton, J.) 31–115 (Oxford University Press, Oxford, 2000).

    Google Scholar 

Download references

Acknowledgements

In memory of L. C. Katz. This review and our research were supported by grants from the NIH/NIDCD (F.Z.) and the MRC/BBSRC (P.A.B.). Apologies to our colleagues whose work we could not cite owing to space limitations.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peter A. Brennan or Frank Zufall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brennan, P., Zufall, F. Pheromonal communication in vertebrates. Nature 444, 308–315 (2006). https://doi.org/10.1038/nature05404

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing