Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insects as chemosensors of humans and crops

Abstract

Insects transmit disease to hundreds of millions of people a year, and cause enormous losses to the world's agricultural output. Many insects find the human or plant hosts on which they feed, and identify and locate their mates, primarily through olfaction and taste. Major advances have recently been made in understanding insect chemosensation at the molecular and cellular levels. These advances have provided new opportunities to control insects that cause massive damage to health and agriculture across the world.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An insect vector of human disease.
Figure 2: Crop plants are vulnerable to insect pests.
Figure 3: Anatomy and physiology of the Drosophila melanogaster antenna.
Figure 4: Tree of Or (Odorant receptor) and Gr (Gustatory receptor) families of Drosophila melanogaster, which belong to a chemoreceptor superfamily.

References

  1. Snow, R. W., Guerra, A. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO & UNICEF World Malaria Report 2005 [online] <http://www.rbm.who.int/wmr2005> (2005).

  3. Smallegange, R. C., Qiu, Y. T., Van Loon, J. J. A. & Takken, W. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chem. Senses 30, 145–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Qiu, Y. T., Smallegange, R. C., van Loon, J. J. A. & Takken, W. Interindividual variation in odour-mediated attractiveness of human odours to the malaria mosquito Anopheles gambiae. Med. Vet. Entomol. 20, 280–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Schreck, C. E., Kline, D. L. & Carlson, D. A. Mosquito attraction to substances from the skin of different humans. J. Am. Mosquito Control Assoc. 6, 406–410 (1990).

    CAS  Google Scholar 

  6. White, G. B. Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. Trop. Med. Hyg. 68, 278–299 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Pates, H. V., Takken, W., Stuke, K. & Curtis, C. F. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bull. Entomol. Res. 91, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Pimentel, D. Diversification of biological control strategies in agriculture. Crop Protection 10, 243–253 (1991).

    Article  Google Scholar 

  9. Haney, P. B. in Boll Weevil Eradication in the United States through 1999 (eds Dickerson, W. A. et al.) 7–24 (The Cotton Foundation Publisher, Memphis, 2001).

    Google Scholar 

  10. Harris, K. F. & Maramorosch, K. (eds) Vectors of Plant Pathogens (Academic, New York, 1980).

    Google Scholar 

  11. Judd, J. G. R. & Borden, J. Distant olfactory response of the onion fly, Delia antiqua, to host-plant odour in the field. Physiol. Entomol. 14, 429–441 (1989).

    Article  Google Scholar 

  12. Zhang, A. et al. Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J. Chem. Ecol. 25, 1221–1231 (1999).

    Article  CAS  Google Scholar 

  13. Glendinning, J. I., Davis, A. & Ramaswamy, S. Contribution of different taste cells and signaling pathways to the discrimination of 'bitter' taste stimuli by an insect. J. Neurosci. 22, 7281–7287 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Del Campo, M. L. et al. Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature 411, 186–189 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Fraenkel, G. S. The raison d'être of secondary plant substances. Science 129, 1466–1470 (1959).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Metcalf, R. L., Metcalf, R. A. & Rhodes, A. M. Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl Acad. Sci. USA 77, 3769–3772 (1980).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Witzgall, P., Lindblom, T., Bengtsson, M. & Tóth, M. The Pherolist Phero Net [online] <http://www-pherolist.slu.se./pherolist.php> (2004).

    Google Scholar 

  18. Mustaparta, H. in Insect Pheromone Research: New Directions (eds Cardé, R. T. & Minks, A. K.) 144–163 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  19. Butenandt, A., Beckmann, R., Stamm, D. & Hecker, E. Uber den Sexual-Lockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch. 14, 283–284 (1959).

    Google Scholar 

  20. Shields, V. D. C. & Hildebrand, J. G. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A 186, 1135–1151 (2001).

    Article  CAS  Google Scholar 

  21. De Bruyne, M., Clyne, P. J. & Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogt, R. G. & Riddiford, L. M. Pheromone binding and inactivation by moth antennae. Nature 293, 161–163 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sandler, B. H., Nikonova, L., Leal, W. S. & Clardy, J. Sexual attraction in the silkworm moth: structure of the pheromone-binding protein–bombykol complex. Chem. Biol. 7, 143–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Horst, R. et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl Acad. Sci. USA 98, 14374–14379 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campanacci, V. et al. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J. Biol. Chem. 276, 20078–20084 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Maida, R., Krieger, J., Gebauer, T., Lange, U. & Ziegelberger, G. Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur. J. Biochem. 267, 2899–2908 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kaissling, K.-E. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26, 125–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Leal, W. S. Pheromone reception. Top. Curr. Chem. 240, 1–36 (2004).

    Article  Google Scholar 

  29. Schoonhoven, L. M., Van Loon, J. J. A. & Dicke, M. Insect–Plant Biology (Oxford Univ. Press, UK, Oxford, 2005).

    Google Scholar 

  30. Schoonhoven, L. M., Blaney, W. M. & Simmonds, M. S. J. in Insect–Plant Interactions (ed. Bernays, E. A.) 59–79 (CRC, Boca Raton, 1992).

    Google Scholar 

  31. Mitchell, B. K. Physiology of an ATP receptor in labellar sensilla of the tsetse fly Glossina morsitans morsitans Westw. (Diptera: Glossinidae). J. Exp. Biol. 65, 259–271 (1976).

    CAS  PubMed  Google Scholar 

  32. Van der Goes van Naters, W. M. & Rinkes, T. H. N. Taste stimuli for tsetse flies on the human skin. Chem. Senses 18, 437–444 (1993).

    Article  Google Scholar 

  33. Van der Goes van Naters, W. M. & Den Otter, C. J. Amino acids as taste stimuli for tsetse flies. Physiol. Entomol. 23, 278–284 (1998).

    Article  CAS  Google Scholar 

  34. Gilbert, I. H., Gouck, H. K. & Smith, C. N. New mosquito repellents. J. Econ. Entomol. 48, 741–743 (1955).

    Article  CAS  Google Scholar 

  35. Leak, S. G. A. Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis (CABI, Wallingford, 1999).

    Google Scholar 

  36. Kuhar, T. P., Mori, K. & Dickens, J. C. Potential of a synthetic aggregation pheromone for integrated pest management of Colorado potato beetle. Agric. For. Entomol. 77–81 (2006).

  37. Arn, H. & Louis, F. in Insect Pheromone Research: New Directions (eds Cardé, R. T. & Minks, A. K.) 377–382 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  38. Schmutterer, H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol. 35, 271–297 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Koul, O. Insect Antifeedants (CRC, Boca Raton, 2005).

    Google Scholar 

  40. Klun, J. A. et al. Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (Deet) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3-37220) in laboratory human-volunteer repellent assays. J. Med. Entomol. 41, 418–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Mota-Sanchez, D., Hollingworth, R. M., Grafius, E. J. & Moyer, D. D. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Manag. Sci. 62, 30–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Glare, T. R. & O'Callaghan, M. Bacillus thuringiensis: Biology, Ecology and Safety (John Wiley & Sons, Chichester, 2000).

    Google Scholar 

  43. Hajek, A. Natural Enemies: An Introduction to Biological Control (Cambridge Univ. Press, Cambridge, UK, 2004).

    Book  Google Scholar 

  44. Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 14537–14542 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stortkuhl, K. F. & Kettler, R. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 9381–9385 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wetzel, C. H. et al. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl Acad. Sci. USA 98, 9377–9380 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dobritsa, A. A., Van der Goes van Naters, W., Warr, C. G., Steinbrecht, R. A. & Carlson, J. R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46, 445–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Goldman, A. L., Van der Goes van Naters, W., Lessing, D., Warr, C. G. & Carlson, J. R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R. & Zwiebel, L. J. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl Acad. Sci. USA 98, 14693–14697 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hill, C. A. et al. G protein-coupled receptors in Anopheles gambiae. Science 298, 176–178 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Krieger, J. et al. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci. 16, 619–628 (2002).

    Article  PubMed  Google Scholar 

  57. Sakurai, T. et al. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl Acad. Sci. USA 101, 16653–16658 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638–1642 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Jones, W. D., Nguyen, T. A., Kloss, B., Lee, K. J. & Vosshall, L. B. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 15, R119–R121 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Krieger, J., Klink, O., Mohl, C., Raming, K. & Breer, H. A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A 189, 519–526 (2003).

    Article  CAS  Google Scholar 

  61. Neuhaus, E. M. et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci. 8, 15–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Clyne, P. J., Warr, C. G. & Carlson, J. R. Candidate taste receptors in Drosophila. Science 287, 1830–1834 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Dahanukar, A., Foster, K., Van der Goes van Naters, W. M. & Carlson, J. R. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nature Neurosci. 4, 1182–1186 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Dunipace, L., Meister, S., McNealy, C. & Amrein, H. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bray, S. & Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019–1029 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Thorne, N., Chromey, C., Bray, S. & Amrein, H. Taste perception and coding in Drosophila. Curr. Biol. 14, 1065–1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Vogt, R. G., Callahan, F. E., Rogers, M. E. & Dickens, J. C. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem. Senses 24, 481–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Hekmat-Scafe, D. S., Scafe, C. R., McKinney, A. J. & Tanouye, M. A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 12, 1357–1369 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu, P. X., Zwiebel, L. J. & Smith, D. P. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 12, 549–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nature Neurosci. 3, 1248–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Oka, Y., Omura, M., Kataoka, H. & Touhara, K. Olfactory receptor antagonism between odorants. EMBO J. 23, 120–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Hallem, E. A., Fox, A. N., Zwiebel, L. J. & Carlson, J. R. Olfaction: mosquito receptor for human-sweat odorant. Nature 427, 212–213 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Xu, P., Atkinson, R., Jones, D. N. & Smith, D. P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Maibeche-Coisne, M., Nikonov, A. A., Ishida, Y., Jacquin-Joly, E. & Leal, W. S. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc. Natl Acad. Sci. USA 101, 11459–11464 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. De Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is funded by the NIH, a Senior Scholar Award from the Ellison Medical Foundation (J.R.C.) and a grant from the Foundation for the NIH through the Grand Challenges in Global Health initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van der Goes van Naters, W., Carlson, J. Insects as chemosensors of humans and crops. Nature 444, 302–307 (2006). https://doi.org/10.1038/nature05403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05403

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing