Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Comparative chemosensation from receptors to ecology

Abstract

Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied — that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Olfactory receptor diversity.
Figure 2: Different receptor expression strategies in different animals.
Figure 3: Transition from the first to the second stage of olfactory processing.
Figure 4: Odorant sensitivity of olfactory sensory neurons and projection neurons.

Similar content being viewed by others

References

  1. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Niimura, Y. & Nei, M. Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene 14, 13–21 (2005).

    Google Scholar 

  3. Niimura, Y. & Nei, M. Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346, 23–28 (2005).

    CAS  PubMed  Google Scholar 

  4. Robertson, H. A. & Thomas, J. H. The putative chemoreceptor families of C. elegans. Wormbook <http://www.wormbook.org> doi/10.1895/wormbook.1.66.1 (2006).

  5. Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A. & Bargmann, C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207–218 (1995).

    CAS  PubMed  Google Scholar 

  6. Colosimo, M. E. et al. Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr. Biol. 14, 2245–2251 (2004).

    CAS  PubMed  Google Scholar 

  7. McCarroll, S. A., Li, H. & Bargmann, C. I. Identification of transcriptional regulatory elements in chemosensory receptor genes by probabilistic segmentation. Curr. Biol. 15, 347–352 (2005).

    CAS  PubMed  Google Scholar 

  8. Chen, N. et al. Identification of a nematode chemosensory gene family. Proc. Natl Acad. Sci. USA 102, 146–151 (2005).

    ADS  CAS  PubMed  Google Scholar 

  9. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004).

    ADS  CAS  PubMed  Google Scholar 

  10. Cheung, B. H., Cohen, M., Rogers, C., Albayram, O. & de Bono, M. Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr. Biol. 15, 905–917 (2005).

    CAS  PubMed  Google Scholar 

  11. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    CAS  PubMed  Google Scholar 

  13. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    CAS  PubMed  Google Scholar 

  14. Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4, e20 (2006).

    PubMed  PubMed Central  Google Scholar 

  15. Wistrand, M., Kall, L. & Sonnhammer, E. L. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci. 15, 509–521 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Neuhaus, E. M. et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nature Neurosci. 8, 15–17 (2005).

    CAS  PubMed  Google Scholar 

  17. Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    ADS  CAS  PubMed  Google Scholar 

  18. Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  PubMed  Google Scholar 

  19. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  PubMed  Google Scholar 

  20. Wetzel, C. H. et al. Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci. 19, 7426–7433 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Touhara, K. et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl Acad. Sci. USA 96, 4040–4045 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nature Neurosci. 3, 1248–1255 (2000).

    CAS  PubMed  Google Scholar 

  24. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    ADS  CAS  PubMed  Google Scholar 

  25. Gether, U. & Kobilka, B. K. G protein-coupled receptors. II. Mechanism of agonist activation. J. Biol. Chem. 273, 17979–17982 (1998).

    CAS  PubMed  Google Scholar 

  26. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    ADS  CAS  PubMed  Google Scholar 

  27. Lu, Z. L., Saldanha, J. W. & Hulme, E. C. Seven-transmembrane receptors: crystals clarify. Trends Pharmacol. Sci. 23, 140–146 (2002).

    CAS  PubMed  Google Scholar 

  28. Katada, S., Hirokawa, T., Oka, Y., Suwa, M. & Touhara, K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J. Neurosci. 25, 1806–1815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Oka, Y., Omura, M., Kataoka, H. & Touhara, K. Olfactory receptor antagonism between odorants. EMBO J. 14, 120–126 (2004).

    Google Scholar 

  30. de Bruyne, M., Clyne, P. J. & Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    CAS  PubMed  Google Scholar 

  32. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS  PubMed  Google Scholar 

  33. Elmore, T., Ignell, R., Carlson, J. R. & Smith, D. P. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 23, 9906–9912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao, C. A., Ignell, R. & Carlson, J. R. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci. 25, 8539–8567 (2005).

    Google Scholar 

  35. Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    CAS  PubMed  Google Scholar 

  36. Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46, 445–456 (2005).

    CAS  PubMed  Google Scholar 

  37. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    CAS  PubMed  Google Scholar 

  38. Sengupta, P., Chou, J. C. & Bargmann, C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 (1996).

    CAS  PubMed  Google Scholar 

  39. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    CAS  PubMed  Google Scholar 

  40. Serizawa, S. et al. Negative feedback regulation ensures the one receptor–one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003).

    ADS  CAS  PubMed  Google Scholar 

  41. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993).

    CAS  PubMed  Google Scholar 

  42. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318 (1993).

    CAS  PubMed  Google Scholar 

  43. Qasba, P. & Reed, R. R. Tissue and zonal-specific expression of an olfactory receptor transgene. J. Neurosci. 18, 227–236 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lewcock, J. W. & Reed, R. R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl Acad. Sci. USA 101, 1069–1074 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shykind, B. M. et al. Gene switching and the stability of odorant receptor gene choice. Cell 117, 801–815 (2004).

    CAS  PubMed  Google Scholar 

  46. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    CAS  PubMed  Google Scholar 

  47. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    CAS  PubMed  Google Scholar 

  48. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    CAS  PubMed  Google Scholar 

  49. Dobritsa, A. A. et al. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    CAS  PubMed  Google Scholar 

  50. Goldman, A. L., Van der Goes van Naters, W., Lessing, D., Warr, C. G. & Carlson, J. R. Coexpression of two functional odor receptors in one neuron. Neuron 45, 661–666 (2005).

    CAS  PubMed  Google Scholar 

  51. Sengupta, P., Colbert, H. A. & Bargmann, C. I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971–980 (1994).

    CAS  PubMed  Google Scholar 

  52. Lanjuin, A. & Sengupta, P. Specification of chemosensory neuron subtype identities in Caenorhabditis elegans. Curr. Opin. Neurobiol. 14, 22–30 (2004).

    CAS  PubMed  Google Scholar 

  53. Johnston, R. J. J., Chang, S., Etchberger, J. F., Ortiz, C. O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. USA 102, 12449–12454 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999).

    CAS  PubMed  Google Scholar 

  55. Peckol, E. L., Troemel, E. R. & Bargmann, C. I. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 11032–11038 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nolan, K. M., Sarafi-Reinach, T. R., Horne, J. G., Saffer, A. M. & Sengupta, P. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans. Genes Dev. 16, 3061–3073 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R. & Zwiebel, L. J. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl Acad. Sci. USA 98, 14693–14697 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15, 2086–2096 (2005).

    CAS  PubMed  Google Scholar 

  59. Barth, A. L., Justice, N. J. & Ngai, J. Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron 16, 23–34 (1996).

    CAS  PubMed  Google Scholar 

  60. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1256 (1994).

    CAS  PubMed  Google Scholar 

  61. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–992 (1994).

    CAS  PubMed  Google Scholar 

  62. Strotmann, J. et al. Local permutations in the glomerular array of the mouse olfactory bulb. J. Neurosci. 20, 6927–6938 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Komiyama, T. & Luo, L. Development of wiring specificity in the olfactory system. Curr. Opin. Neurobiol. 16, 67–73 (2006).

    CAS  PubMed  Google Scholar 

  64. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    ADS  CAS  Google Scholar 

  65. Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in the mammalian olfactory bulb. Physiol. Rev. 86, 409–433 (2006).

    CAS  PubMed  Google Scholar 

  66. Rubin, B. & Katz, L. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  PubMed  Google Scholar 

  67. Meister, M. & Bonhoeffer, T. Tuning and topography in an animal olfactory bulb. J. Neurosci. 15, 1351–1360 (2001).

    Google Scholar 

  68. Baier, H. & Korsching, S. Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J. Neurosci. 14, 219–230 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Friedrich, R. W. & Korsching, S. I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737–752 (1997).

    CAS  PubMed  Google Scholar 

  70. Wilson, R. I., Turner, G. C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    ADS  CAS  PubMed  Google Scholar 

  71. Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    CAS  PubMed  Google Scholar 

  73. Shields, V. D. & Hildebrand, J. G. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A 186, 1135–1151 (2001).

    CAS  Google Scholar 

  74. Galizia, C. G. & Menzel, R. The role of glomeruli in the neural representation of odours: results from optical recording studies. J. Insect Physiol. 47, 115–130 (2001).

    CAS  PubMed  Google Scholar 

  75. Christensen, T. A. & Hildebrand, J. G. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol. A 160, 553–569 (1987).

    CAS  PubMed  Google Scholar 

  76. Hansson, B. S., Christensen, T. A. & Hildebrand, J. G. Functionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth Manduca sexta. J. Comp. Neurol. 312, 264–278 (1991).

    CAS  PubMed  Google Scholar 

  77. Christensen, T. A., Waldrop, B. R., Harrow, I. D. & Hildebrand, J. G. Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173, 385–399 (1993).

    CAS  PubMed  Google Scholar 

  78. Lin, D. Y., Shea, S. D. & Katz, L. C. Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50, 937–949 (2006).

    CAS  Google Scholar 

  79. Bargmann, C. I. & Mori, I. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 717–737 ( Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

  80. Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).

    CAS  PubMed  Google Scholar 

  81. Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35, 307–318 (2002).

    CAS  PubMed  Google Scholar 

  82. Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).

    ADS  CAS  PubMed  Google Scholar 

  83. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

    CAS  PubMed  Google Scholar 

  84. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    CAS  PubMed  Google Scholar 

  85. Suh, G. S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).

    ADS  CAS  PubMed  Google Scholar 

  86. Thom, C., Guerenstein, P. G., Mechaber, W. L. & Hildebrand, J. G. Floral CO2 reveals flower profitability to moths. J. Chem. Ecol. 30, 1285–1288 (2004).

    CAS  PubMed  Google Scholar 

  87. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    CAS  PubMed  Google Scholar 

  88. Mongeau, R., Miller, G. A., Chiang, E. & Anderson, D. J. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J. Neurosci. 23, 3855–3868 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mandiyan, V. S., Coats, J. K. & Shah, N. M. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nature Neurosci. 8, 1660–1662 (2005).

    CAS  PubMed  Google Scholar 

  90. Quinn, W. G., Harris, W. A. & Benzer, S. Conditioned behavior in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 71, 708–712 (1974).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, Y., Lu, H. & Bargmann, C. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184 (2005).

    ADS  CAS  PubMed  Google Scholar 

  92. Glusman, G. et al. The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm. Genome 11, 1016–1023 (2000).

    CAS  PubMed  Google Scholar 

  93. Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl Acad. Sci. USA 102, 6039–6044 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Freitag, J., Krieger, J., Strotmann, J. & Breer, H. Two classes of olfactory receptors in Xenopus laevis. Neuron 15, 1383–1392 (1995).

    CAS  PubMed  Google Scholar 

  95. Crane, P. R., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).

    ADS  CAS  Google Scholar 

  96. Bernays, E. A. Evolution of feeding behavior in insect herbivores. Bioscience 48, 35–44 (1998).

    Google Scholar 

  97. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    CAS  PubMed  Google Scholar 

  98. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).

    CAS  PubMed  Google Scholar 

  99. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    CAS  PubMed  Google Scholar 

  100. Zou, Z., Horowitz, L. F., Montmayeur, J. P., Snapper, S. & Buck, L. B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R. Wilson and L. Vosshall greatly improved this piece by their comments and corrections. C.I.B. is an Investigator of the Howard Hughes Medical Institute; the laboratory's work on olfaction is funded by the NIDCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia I. Bargmann.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargmann, C. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006). https://doi.org/10.1038/nature05402

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05402

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing