Review Article | Published:

The receptors and cells for mammalian taste

Naturevolume 444pages288294 (2006) | Download Citation

Subjects

Abstract

The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

References

  1. 1

    Smith, D. V. & St John, S. J. Neural coding of gustatory information. Curr. Opin. Neurobiol. 9, 427–435 (1999).

  2. 2

    Erickson, R. P., Covey, E. & Doetsch, G. S. Neuron and stimulus typologies in the rat gustatory system. Brain Res. 196, 513–519 (1980).

  3. 3

    Erickson, R. P. The evolution of neural coding ideas in the chemical senses. Physiol. Behav. 69, 3–13 (2000).

  4. 4

    Caicedo, A., Kim, K. N. & Roper, S. D. Individual mouse taste cells respond to multiple chemical stimuli. J. Physiol. (Lond.) 544, 501–509 (2002).

  5. 5

    Smith, D. V., John, S. J. & Boughter, J. D. Neuronal cell types and taste quality coding. Physiol. Behav. 69, 77–85 (2000).

  6. 6

    Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96, 541–551 (1999).

  7. 7

    Bachmanov, A. A. et al. Positional cloning of the mouse saccharin preference (Sac) locus. Chem. Senses 26, 925–933 (2001).

  8. 8

    Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

  9. 9

    Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

  10. 10

    Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

  11. 11

    Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y. & Hino, A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283, 236–242 (2001).

  12. 12

    Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58–63 (2001).

  13. 13

    Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001).

  14. 14

    Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896–903 (2001).

  15. 15

    Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

  16. 16

    Pin, J. P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord. 1, 297–317 (2002).

  17. 17

    Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

  18. 18

    Fuller, J. L. Single-locus control of saccharin preference in mice. J. Hered. 65, 33–36 (1974).

  19. 19

    Lush, I. E. The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53, 95–99 (1989).

  20. 20

    Li, X. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. Mamm. Genome 12, 13–16 (2001).

  21. 21

    Danilova, V., Hellekant, G., Tinti, J. M. & Nofre, C. Gustatory responses of the hamster Mesocricetus auratus to various compounds considered sweet by humans. J. Neurophysiol. 80, 2102–2112 (1998).

  22. 22

    Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

  23. 23

    Jiang, P. et al. Molecular mechanisms of sweet receptor function. Chem. Senses 30 (Suppl. 1), i17–i18 (2005).

  24. 24

    Jiang, P. et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279, 45068–45075 (2004).

  25. 25

    Damak, S. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850–853 (2003).

  26. 26

    Li, X. et al. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar. PLoS Genet. 1, 27–35 (2005).

  27. 27

    Iwasaki, K., Kasahara, T. & Sato, M. Gustatory effectiveness of amino acids in mice: behavioral and neurophysiological studies. Physiol. Behav. 34, 531–542 (1985).

  28. 28

    Iwasaki, K. & Sato, M. A. Taste preferences for amino acids in the house musk shrew, Suncus murinus. Physiol. Behav. 28, 829–833 (1982).

  29. 29

    Pritchard, T. C. & Scott, T. R. Amino acids as taste stimuli. I. Neural and behavioral attributes. Brain Res. 253, 81–92 (1982).

  30. 30

    Ikeda, K. New seasonings. Chem. Senses 27, 847–849 (2002).

  31. 31

    Yamaguchi, S. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J. Food Sci. 32, 473–478 (1967).

  32. 32

    Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

  33. 33

    Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

  34. 34

    Lush, I. E. & Holland, G. The genetics of tasting in mice. V. Glycine and cycloheximide. Genet. Res. 52, 207–212 (1988).

  35. 35

    Reed, D. R. et al. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am. J. Hum. Genet. 64, 1478–1480 (1999).

  36. 36

    Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

  37. 37

    Bufe, B., Hofmann, T., Krautwurst, D., Raguse, J. D. & Meyerhof, W. The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nature Genet. 32, 397–401 (2002).

  38. 38

    Pronin, A. N., Tang, H., Connor, J. & Keung, W. Identification of ligands for two human bitter T2R receptors. Chem. Senses 29, 583–593 (2004).

  39. 39

    Kuhn, C. et al. Bitter taste receptors for saccharin and acesulfame K. J. Neurosci. 24, 10260–10265 (2004).

  40. 40

    Behrens, M. et al. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem. Biophys. Res. Commun. 319, 479–485 (2004).

  41. 41

    Wooding, S. et al. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440, 930–934 (2006).

  42. 42

    Kim, U. K. et al. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299, 1221–1225 (2003).

  43. 43

    Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).

  44. 44

    Shi, P. & Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol. Biol. Evol. 23, 292–300 (2006).

  45. 45

    Go, Y., Satta, Y., Takenaka, O. & Takahata, N. Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170, 313–326 (2005).

  46. 46

    Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

  47. 47

    Spector, A. C. & Kopka, S. L. Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds. J. Neurosci. 22, 1937–1941 (2002).

  48. 48

    Chaudhari, N. & Roper, S. D. Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor. Ann. NY Acad. Sci. 855, 398–406 (1998).

  49. 49

    Kinnamon, S. C. A plethora of taste receptors. Neuron 25, 507–510 (2000).

  50. 50

    Smith, D. V. & Margolskee, R. F. Making sense of taste. Sci. Am. 284, 32–39 (2001).

  51. 51

    Brunet, L. J., Gold, G. H. & Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17, 681–693 (1996).

  52. 52

    Damak, S. et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses 31, 253–264 (2006).

  53. 53

    McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

  54. 54

    Kusakabe, Y. et al. Comprehensive study on G protein α-subunits in taste bud cells, with special reference to the occurrence of Gαi2 as a major Gα species. Chem. Senses 25, 525–531 (2000).

  55. 55

    Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nature Neurosci. 2, 1055–1062 (1999).

  56. 56

    Rossler, P., Kroner, C., Freitag, J., Noe, J. & Breer, H. Identification of a phospholipase C β subtype in rat taste cells. Eur. J. Cell Biol. 77, 253–261 (1998).

  57. 57

    Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nature Neurosci. 5, 1169–1176 (2002).

  58. 58

    Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

  59. 59

    Ruiz, C. J., Wray, K., Delay, E., Margolskee, R. F. & Kinnamon, S. C. Behavioral evidence for a role of α-gustducin in glutamate taste. Chem. Senses 28, 573–579 (2003).

  60. 60

    Dotson, C. D., Roper, S. D. & Spector, A. C. PLCβ2-independent behavioral avoidance of prototypical bitter-tasting ligands. Chem. Senses 30, 593–600 (2005).

  61. 61

    Varkevisser, B. & Kinnamon, S. C. Sweet taste transduction in hamster: role of protein kinases. J. Neurophysiol. 83, 2526–2532 (2000).

  62. 62

    Rosenzweig, S., Yan, W., Dasso, M. & Spielman, A. I. Possible novel mechanism for bitter taste mediated through cGMP. J. Neurophysiol. 81, 1661–1665 (1999).

  63. 63

    Bernhardt, S. J., Naim, M., Zehavi, U. & Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol. (Lond.) 490, 325–336 (1996).

  64. 64

    Striem, B. J., Pace, U., Zehavi, U., Naim, M. & Lancet, D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260, 121–126 (1989).

  65. 65

    Gilbertson, T. A. & Boughter, J. D. Taste transduction: appetizing times in gustation. Neuroreport 14, 905–911 (2003).

  66. 66

    Avenet, P., Hofmann, F. & Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331, 351–354 (1988).

  67. 67

    Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

  68. 68

    Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405 (1984).

  69. 69

    Avenet, P. & Lindemann, B. Amiloride-blockable sodium currents in isolated taste receptor cells. J. Membr. Biol. 105, 245–255 (1988).

  70. 70

    Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. (Lond.) 558, 147–159 (2004).

  71. 71

    Stevens, D. R. et al. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413, 631–635 (2001).

  72. 72

    Ugawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555–556 (1998).

  73. 73

    Lin, W., Burks, C. A., Hansen, D. R., Kinnamon, S. C. & Gilbertson, T. A. Taste receptor cells express pH-sensitive leak K+ channels. J. Neurophysiol. 92, 2909–2919 (2004).

  74. 74

    Richter, T. A., Dvoryanchikov, G. A., Chaudhari, N. & Roper, S. D. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92, 1928–1936 (2004).

  75. 75

    Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).

  76. 76

    Lyall, V. et al. Basolateral Na+–H+ exchanger-1 in rat taste receptor cells is involved in neural adaptation to acidic stimuli. J. Physiol. (Lond.) 556, 159–173 (2004).

  77. 77

    Cummings, T. A. & Kinnamon, S. C. Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli. J. Gen. Physiol. 99, 591–613 (1992).

  78. 78

    Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

  79. 79

    Lopezjimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98, 68–77 (2006).

  80. 80

    Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA 103, 12569–12574 (2006).

  81. 81

    Lahiri, S. & Forster, R. E. CO2/H+ sensing: peripheral and central chemoreception. Int. J. Biochem. Cell Biol. 35, 1413–1435 (2003).

  82. 82

    Vigh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607–628 (2004).

  83. 83

    Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 21, 4931–4941 (2001).

  84. 84

    Sato, T. & Beidler, L. M. Broad tuning of rat taste cells for four basic taste stimuli. Chem. Senses 22, 287–293 (1997).

  85. 85

    Richter, T. A., Caicedo, A. & Roper, S. D. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. (Lond.) 547, 475–483 (2003).

  86. 86

    Redfern, C. H. et al. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nature Biotechnol. 17, 165–169 (1999).

  87. 87

    Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).

  88. 88

    Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 309, 781–785 (2005).

  89. 89

    Zou, Z., Horowitz, L. F., Montmayeur, J. P., Snapper, S. & Buck, L. B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

  90. 90

    Kuze, B., Matsuyama, K., Matsui, T., Miyata, H. & Mori, S. Segment-specific branching patterns of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. J. Comp. Neurol. 414, 80–96 (1999).

  91. 91

    Rolls, E. T. The Brain and Emotion (Oxford Univ. Press, USA, 2000).

  92. 92

    Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).

  93. 93

    Di Lorenzo, P. M. The neural code for taste in the brain stem: response profiles. Physiol. Behav. 69, 87–96 (2000).

  94. 94

    Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4, 143–191 (2005).

  95. 95

    Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

  96. 96

    Choi, G. B. et al. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46, 647–660 (2005).

  97. 97

    Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

  98. 98

    Gosgnach, S. et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219 (2006).

  99. 99

    Gogos, J. A., Osborne, J., Nemes, A., Mendelsohn, M. & Axel, R. Genetic ablation and restoration of the olfactory topographic map. Cell 103, 609–620 (2000).

  100. 100

    Brecht, M. et al. Novel approaches to monitor and manipulate single neurons in vivo. J. Neurosci. 24, 9223–9227 (2004).

Download references

Acknowledgements

We thank a group of extraordinary students, postdoctoral fellows and research technicians in our laboratories, who joined us on this wonderful journey of mammalian taste research beginning in the fall of 1997. N.J.P.R. is an investigator in the Intramural program at the NIH, NIDCR. C.S.Z. is an investigator of the Howard Hughes Medical Institute.

Author information

Affiliations

  1. Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, 92093-0649, California, USA

    • Jayaram Chandrashekar
    •  & Charles S. Zuker
  2. National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, 20892, Maryland, USA

    • Mark A. Hoon
    •  & Nicholas J. P. Ryba

Authors

  1. Search for Jayaram Chandrashekar in:

  2. Search for Mark A. Hoon in:

  3. Search for Nicholas J. P. Ryba in:

  4. Search for Charles S. Zuker in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Nicholas J. P. Ryba or Charles S. Zuker.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/nature05401

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.