Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial coupling of nitrogen inputs and losses in the ocean

Abstract

Nitrogen fixation is crucial for maintaining biological productivity in the oceans, because it replaces the biologically available nitrogen that is lost through denitrification. But, owing to its temporal and spatial variability, the global distribution of marine nitrogen fixation is difficult to determine from direct shipboard measurements. This uncertainty limits our understanding of the factors that influence nitrogen fixation, which may include iron, nitrogen-to-phosphorus ratios, and physical conditions such as temperature. Here we determine nitrogen fixation rates in the world’s oceans through their impact on nitrate and phosphate concentrations in surface waters, using an ocean circulation model. Our results indicate that nitrogen fixation rates are highest in the Pacific Ocean, where water column denitrification rates are high but the rate of atmospheric iron deposition is low. We conclude that oceanic nitrogen fixation is closely tied to the generation of nitrogen-deficient waters in denitrification zones, supporting the view that nitrogen fixation stabilizes the oceanic inventory of fixed nitrogen over time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depiction of method to determine N 2 fixation from NO 3 - and PO 4 3- uptake.
Figure 2: Annual mean distribution of P*, ocean currents, and the N 2 fixation rates determined from them at 0–120 m depth.

Similar content being viewed by others

References

  1. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, M. N.) Vol. 2 26–77 (Interscience, New York, 1963)

    Google Scholar 

  2. Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Karl, D. et al. Dinitrogen fixation in the world’s oceans. Biogeochemistry 57/58, 47–98 (2002)

    Article  CAS  Google Scholar 

  5. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13, 352–364 (1998)

    Article  ADS  Google Scholar 

  6. Codispoti, L. A. Biogeochemical cycles—Is the ocean losing nitrate?. Nature 376, 724 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Letelier, R. M. & Karl, D. M. Trichodesmium spp. physiology and nutrient fluxes in the North Pacific subtropical gyre. Aquat. Microb. Ecol. 15, 265–276 (1998)

    Article  Google Scholar 

  9. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Conkright, M. E. et al. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation 1–17 (National Oceanographic Data Center, Silver Spring, 2002)

  11. Abell, J., Emerson, S. & Renaud, P. Distributions of TOP, TON and TOC in the North Pacific subtropical gyre: Implications for nutrient supply in the surface ocean and remineralization in the upper thermocline. J. Mar. Res. 58, 203–222 (2000)

    Article  CAS  Google Scholar 

  12. Wu, J. F., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science 289, 759–762 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997)

    Article  CAS  Google Scholar 

  14. Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Codispoti, L. A. & Richards, F. A. An analysis of the horizontal regime of denitrification in the eastern tropical North Pacific. Limnol. Oceanogr. 21, 379–388 (1976)

    Article  ADS  CAS  Google Scholar 

  16. Lehmann, M. F. et al. Origin of the deep Bering Sea nitrate deficit: Constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes. Glob. Biogeochem. Cycles 19 doi: 10.1029/2005GB002508 (2005)

  17. Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A. & Naqvi, S. W. A. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: a tracer for mixing and nitrogen cycles. Limnol. Oceanogr. 43, 1680–1689 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L. & Ganaschaud, A. Denitrification and N2 fixation in the Pacific Ocean. Glob. Biogeochem. Cycles 15, 483–506 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Hansell, D. A., Bates, N. R. & Olson, D. B. Excess nitrate and nitrogen fixation in the North Atlantic Ocean. Mar. Chem. 84, 243–265 (2004)

    Article  CAS  Google Scholar 

  20. Capone, D. G. et al. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob. Biogeochem. Cycles 19 doi: 10.1029/2004GB002331 (2005)

  21. Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmos. 104, 15895–15916 (1999)

    Article  ADS  Google Scholar 

  22. Sigman, D. M. et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Glob. Biogeochem. Cycles 19 doi: 10.1029/2005GB002458 (2005)

  23. Gruber, N. in Carbon-Climate Interactions (eds Follows, M. & Oguz, T.) 97–148 (John Wiley & Sons, New York, 2003)

    Google Scholar 

  24. Deutsch, C., Sigman, D. M., Thunell, R., Meckler, A. N. & Haug, G. H. Isotopic Constraints on the Glacial/Interglacial Oceanic Nitrogen Budget. Glob. Biogeochem. Cycles 18 doi: 10.1029/2003GB002189 (2004)

  25. Codispoti, L. A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar. 65, 85–101 (2001)

    Article  CAS  Google Scholar 

  26. Brandes, J. A. & Devol, A. H. A global marine fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycles 16 doi: 10.1029/2001GB001856 (2002)

  27. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics 118–119 (Princeton Univ. Press, Princeton, 2006)

    Google Scholar 

  28. Tanaka, T. N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: Influence of sedimentary denitrification. Contin. Shelf Res. 24, 1271–1283 (2004)

    Article  ADS  Google Scholar 

  29. Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Glob. Biogeochem. Cycles 19 doi: 10.1029/2004GB002390 (2004)

  30. Gnanadesikan, A., Slater, R. D., Gruber, N. & Sarmiento, J. L. Oceanic vertical exchange and new production: a comparison between models and observations. Deep-Sea Res. II 49, 363–401 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.D. was supported by a NASA Earth System Science Fellowship and the UW Program on Climate Change. J.L.S. and N.G. acknowledge support from the Office of Science (BER) and the US Department of Energy. J.L.S. also acknowledges support from the National Oceanic and Atmospheric Administration. D.M.S. acknowledges support from the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis Deutsch.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains SupplementaryNotes describing sensitivity studies, Supplementary Figues 1-9 with legends and Supplementary Table 1 supporting Supplementary Notes. (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, C., Sarmiento, J., Sigman, D. et al. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167 (2007). https://doi.org/10.1038/nature05392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05392

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing