Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active galactic nuclei as scaled-up Galactic black holes

Abstract

A long-standing question is whether active galactic nuclei (AGN) vary like Galactic black hole systems when appropriately scaled up by mass1,2,3. If so, we can then determine how AGN should behave on cosmological timescales by studying the brighter and much faster varying Galactic systems. As X-ray emission is produced very close to the black holes, it provides one of the best diagnostics of their behaviour. A characteristic timescale—which potentially could tell us about the mass of the black hole—is found in the X-ray variations from both AGN and Galactic black holes1,2,3,4,5,6, but whether it is physically meaningful to compare the two has been questioned7. Here we report that, after correcting for variations in the accretion rate, the timescales can be physically linked, revealing that the accretion process is exactly the same for small and large black holes. Strong support for this linkage comes, perhaps surprisingly, from the permitted optical emission lines in AGN whose widths (in both broad-line AGN and narrow-emission-line Seyfert 1 galaxies) correlate strongly with the characteristic X-ray timescale, exactly as expected from the AGN black hole masses and accretion rates. So AGN really are just scaled-up Galactic black holes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confidence contours for the mass and bolometric indices A and B.
Figure 2: Edge-on projection of our sample and the T B M BH L bol plane.
Figure 3: Correlation of optical emission linewidth with PSD break timescale.

Similar content being viewed by others

References

  1. McHardy, I. M. EXOSAT observations of variability in active galactic nuclei. Mem. Soc. Astron. Ital. 59, 239–259 (1988)

    ADS  Google Scholar 

  2. Edelson, R. & Nandra, K. A cutoff in the X-ray fluctuation power density spectrum of the Seyfert 1 galaxy NGC 3516. Astrophys. J. 514, 682–690 (1999)

    Article  ADS  Google Scholar 

  3. Uttley, P., McHardy, I. M. & Papadakis, I. E. Measuring the broad-band power spectra of active galactic nuclei with RXTE. Mon. Not. R. Astron. Soc. 332, 231–250 (2002)

    Article  ADS  Google Scholar 

  4. Markowitz, A. et al. X-ray fluctuation power spectral densities of Seyfert 1 galaxies. Astrophys. J. 593, 96–114 (2003)

    Article  ADS  Google Scholar 

  5. McHardy, I. M., Papadakis, I. E., Uttley, P., Page, M. J. & Mason, K. O. Combined long and short time-scale X-ray variability of NGC 4051 with RXTE and XMM-Newton. Mon. Not. R. Astron. Soc. 348, 783–801 (2004)

    Article  ADS  Google Scholar 

  6. Papadakis, I. E. The scaling of the X-ray variability with black hole mass in active galactic nuclei. Mon. Not. R. Astron. Soc. 348, 207–213 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Done, C. & Gierlinski, M. Scaling variability from stellar to supermassive black holes. Mon. Not. R. Astron. Soc. 364, 208–216 (2005)

    Article  ADS  Google Scholar 

  8. Lawrence, A., Watson, M. G., Pounds, K. A. & Elvis, M. Low-frequency divergent X-ray variability in the Seyfert galaxy NGC4051. Nature 325, 694–696 (1987)

    Article  ADS  Google Scholar 

  9. McHardy, I. M & Czerny, B. Fractal X-ray time variability and spectral invariance of the Seyfert galaxy NGC5506. Nature 325, 696–698 (1987)

    Article  ADS  Google Scholar 

  10. Axelsson, M., Borgonovo, L. & Larsson, S. Evolution of the 0.01-25 Hz power spectral components in Cygnus X-1. Astron. Astrophys. 438, 999–1012 (2005)

    Article  ADS  Google Scholar 

  11. McHardy, I. M., Gunn, K. F., Uttley, P. & Goad, M. R. MCG-6-30-15: long time-scale X-ray variability, black hole mass and active galactic nuclei high states. Mon. Not. R. Astron. Soc. 359, 1469–1480 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Uttley, P. & McHardy, I. M. X-ray variability of NGC 3227 and 5506 and the nature of active galactic nucleus ‘states’. Mon. Not. R. Astron. Soc. 363, 586–596 (2005)

    Article  ADS  CAS  Google Scholar 

  13. McClintock, J. E. & Remillard, R. A. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M.) 157–213 (Cambridge Univ. Press, Cambridge, UK, 2006)

    Book  Google Scholar 

  14. Lyubarskii, I. E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 292, 679–685 (1997)

    Article  ADS  Google Scholar 

  15. Trudolyubov, S. P. On the two types of steady hard X-ray states of GRS 1915+105. Astrophys. J. 558, 276–282 (2001)

    Article  ADS  Google Scholar 

  16. Wilms, J., Nowak, M. A., Pottschmidt, K., Pooley, G. & Fritz, S. Long term variability of Cygnus X-1. IV. Spectral evolution 1999-2004. Astron. Astrophys. 447, 245–261 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Pottschmidt, K. et al. Long term variability of Cygnus X-1. I. X-ray spectral-temporal correlations in the hard state. Astron. Astrophys. 407, 1039–1058 (2003)

    Article  ADS  Google Scholar 

  18. Liu, B. F., Yuan, W., Meyer, F., Meyer-Hofmeister, E. & Xie, G. Z. Evaporation of accretion disks around black holes: The disk-corona transition and the connection to the advection-dominated accretion flow. Astrophys. J. 527, L17–L20 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Nowak, M. A. Are there three peaks in the power spectra of GX 339-4 and Cyg X-1?. Mon. Not. R. Astron. Soc. 318, 361–367 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Migliari, S., Fender, R. P. & van der Klis, M. Correlation between radio luminosity and X-ray timing frequencies in neutron star and black hole X-ray binaries. Mon. Not. R. Astron. Soc. 363, 112–120 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003)

    Article  ADS  Google Scholar 

  22. Falcke, H., Koerding, E. & Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004)

    Article  ADS  Google Scholar 

  23. Turner, T. J., George, I. M., Nandra, K. & Turcan, D. On X-ray variability in Seyfert galaxies. Astrophys. J. 524, 667–673 (1999)

    Article  ADS  Google Scholar 

  24. Leighly, K. M. A comprehensive spectral and variability study of narrow-line Seyfert 1 galaxies observed by ASCA. I. Observations and time series analysis. Astrophys. J. Suppl. 125297–316 (1999)

  25. Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M. & Onken, C. A. The radius-luminosity relationship for active galactic nuclei: The effect of host-galaxy starlight on luminosity measurements. Astrophys. J. 644, 133–142 (2006)

    Article  ADS  Google Scholar 

  26. Peterson, B. M. et al. Central masses and broad-line region sizes of active galactic nuclei. II. A homogeneous analysis of a large reverberation-mapping database. Astrophys. J. 613, 682–699 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Kollatschny, W., Zetzl, M. & Dietrich, M. Spectral line variability amplitudes in active galactic nuclei. Astron. Astrophys. 454, 459–472 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Brandt, W. N., Boller, Fabian, A. C. & Ruskowski, M. ROSAT High-Resolution Imager monitoring of extreme X-ray variability in the narrow-line quasar PHL 1092. Mon. Not. R. Astron. Soc. 303, L53–L57 (1999)

    Article  ADS  Google Scholar 

  29. Peterson, B. M. et al. X-ray and optical variability in NGC 4051 and the nature of narrow-line Seyfert 1 galaxies. Astrophys. J. 542, 161–174 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Nagar, N. M., Oliva, E., Marconi, A. & Maiolino, R. NGC 5506 unmasked as a narrow line Seyfert 1:. A direct view of the broad line region using near-IR spectroscopy. Astron. Astrophys. 391, L21–L24 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Particle Physics and Astronomy Research Council (PPARC). We thank P. Smith for discussions about statistics, P. Arevalo for determining the break timescale in GRS 1915+105 and D. Summons for providing some RXTE lightcurves of Cyg X-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. McHardy.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains the study of the scaling relationship between Active Galactic Nuclei (AGN) and Galactic Black Hole X-ray binary systems (GBHs) by means of comparing the way in which their X-ray emission varies. The study also shows how the widths of the permitted optical emission lines, a fundamental tracer of larger scale AGN properties often used to classify AGN, are intimately related to the way in which the timing properties from large to small black holes are scaled. (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHardy, I., Koerding, E., Knigge, C. et al. Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730–732 (2006). https://doi.org/10.1038/nature05389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05389

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing