Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA

Abstract

Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication1. Here we report a 3.2 Å crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein2,3. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleoprotein oligomerization behaviour shown by chromatogram.
Figure 2: Electron microscopy images of influenza virus nucleoprotein (strain A/WSN/33).
Figure 3: Nucleoprotein crystal structure.
Figure 4: Inter-subunit interactions mediated by the tail loop.
Figure 5: RNA-binding by nucleoprotein.

Similar content being viewed by others

References

  1. Lamb, R. A. & Krug, R. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1487–1531 (Lippincott-Raven, Philadelphia, 2001)

    Google Scholar 

  2. Albertini, A. A. et al. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313, 360–363 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Green, T. J., Zhang, X., Wertz, G. W. & Luo, M. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313, 357–360 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Elton, D., Medcalf, L., Bishop, K., Harrison, D. & Digard, P. Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. J. Virol. 73, 7357–7367 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Albo, C., Valencia, A. & Portela, A. Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. J. Virol. 69, 3799–3806 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi, M., Toyoda, T., Adyshev, D. M., Azuma, Y. & Ishihama, A. Molecular dissection of influenza virus nucleoprotein: deletion mapping of the RNA binding domain. J. Virol. 68, 8433–8436 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ortega, J. et al. Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J. Virol. 74, 156–163 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Compans, R. W., Content, J. & Duesberg, P. H. Structure of the ribonucleoprotein of influenza virus. J. Virol. 10, 795–800 (1972)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Area, E. et al. 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc. Natl Acad. Sci. USA 101, 308–313 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Baudin, F., Bach, C., Cusack, S. & Ruigrok, R. W. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J. 13, 3158–3165 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rudolph, M. G. et al. Crystal structure of the borna disease virus nucleoprotein. Structure 11, 1219–1226 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Iseni, F., Barge, A., Baudin, F., Blondel, D. & Ruigrok, R. W. Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-like structures. J. Gen. Virol. 79, 2909–2919 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Wang, P., Palese, P. & O’Neill, R. E. The NPI-1/NPI-3 (karyopherin α) binding site on the influenza A virus nucleoprotein NP is a nonconventional nuclear localization signal. J. Virol. 71, 1850–1856 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neumann, G., Castrucci, M. R. & Kawaoka, Y. Nuclear import and export of influenza virus nucleoprotein. J. Virol. 71, 9690–9700 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cros, J. F., Garcia-Sastre, A. & Palese, P. An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 6, 205–213 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Weber, F., Kochs, G., Gruber, S. & Haller, O. A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology 250, 9–18 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Fontes, M. R., Teh, T. & Kobe, B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J. Mol. Biol. 297, 1183–1194 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Digard, P. et al. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments. J. Virol. 73, 2222–2231 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Medcalf, L., Poole, E., Elton, D. & Digard, P. Temperature-sensitive lesions in two influenza A viruses defective for replicative transcription disrupt RNA binding by the nucleoprotein. J. Virol. 73, 7349–7356 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Honda, A., Ueda, K., Nagata, K. & Ishihama, A. RNA polymerase of influenza virus: role of NP in RNA chain elongation. J. Biochem. 104, 1021–1026 (1988)

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro, G. I. & Krug, R. M. Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J. Virol. 62, 2285–2290 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Biswas, S. K., Boutz, P. L. & Nayak, D. P. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J. Virol. 72, 5493–5501 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabriel, G. et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl Acad. Sci. USA 102, 18590–18595 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data in Oscillation Mode (Academic Press, New York, 1997)

    Google Scholar 

  25. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  28. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Vikharia for providing the baculovirus for expressing nucleoprotein from influenza virus A/Hong Kong/1074/99 (H9N2); Z. Xie for electron microscopy analysis; P. Sliz for collecting the nucleoprotein native data; Y. Shamoo and G. Wu for providing the 24-nucleotide ssRNA; and Y. Shamoo, D. Mata and S. Harrison for discussions and critical reading of the manuscript. Nucleoprotein diffraction data were collected at the Brookhaven National Synchrotron Light Source and the Cornell High Energy Synchrotron Source. This work is supported by grants from the Welch Foundation (to Y.J.T and R.M.K), National Institutes of Health (to Y.J.T), and the Nanoscale Science and Engineering Initiative of the National Science Foundation. Author Contributions Q.Y. crystallized the nucleoprotein. Q.Y. and Y.J.T solved the nucleoprotein crystal structure. Y.J.T, Q.Y. and R.M.K. wrote the paper. All authors discussed the results and commented on the manuscript. The coordinates and the structure factor files have been deposited in the Protein Data Bank under accession code 2IQH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhi Jane Tao.

Ethics declarations

Competing interests

The coordinates and the structure factor files have been deposited in the Protein Data Bank under accession code 2IQH. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Suplementary Information

The file contains Figures 1-5. Figure 1 shows experimental electron density maps of NP, Figure 2 shows a stereo diagram of NP, Figure 3 shows RNA binding activity of the influenza A/WSN/33 NP protein, Table 1 shows diffraction data statistics and Table 2 shows inter-subunit interactions of NP molecules in an NCS trimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Q., Krug, R. & Tao, Y. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444, 1078–1082 (2006). https://doi.org/10.1038/nature05379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05379

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing