Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme

Abstract

Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer’s disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB′C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B′ subunits together on the same side. The regulatory B′ subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B′ subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B′ subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the Aα–B56γ1–Cα heterotrimeric PP2A holoenzyme.
Figure 2: Structures of the scaffold A subunit, the catalytic Cα subunit and the A–C interface.
Figure 3: Overall structure of the regulatory B56γ1 subunit and the A–B interface.
Figure 4: Interface of the catalytic Cα subunit with the regulatory B56γ1.
Figure 5: Interactions between the methylated C-terminal tail of the catalytic Cα subunit and the A–B interface.

Similar content being viewed by others

References

  1. Lin, X. H. et al. Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc. Natl Acad. Sci. USA 95, 14693–14698 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Depaoli-Roach, A. A. et al. Serine/threonine protein phosphatases in the control of cell function. Adv. Enzyme Regul. 34, 199–224 (1994)

    Article  CAS  Google Scholar 

  3. Sontag, E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell. Signal. 13, 7–16 (2001)

    Article  CAS  Google Scholar 

  4. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001)

    Article  CAS  Google Scholar 

  5. Goldberg, Y. Protein phosphatase 2A: who shall regulate the regulator?. Biochem. Pharmacol. 57, 321–328 (1999)

    Article  CAS  Google Scholar 

  6. Virshup, D. M. Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell Biol. 12, 180–185 (2000)

    Article  CAS  Google Scholar 

  7. Ogris, E., Gibson, D. M. & Pallas, D. C. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15, 911–917 (1997)

    Article  CAS  Google Scholar 

  8. Tolstykh, T., Lee, J., Vafai, S. & Stock, J. B. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J. 19, 5682–5691 (2000)

    Article  CAS  Google Scholar 

  9. Wu, J. et al. Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo.. EMBO J. 19, 5672–5681 (2000)

    Article  CAS  Google Scholar 

  10. Yu, X. X. et al. Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Bα regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol. Biol. Cell 12, 185–199 (2001)

    Article  CAS  Google Scholar 

  11. Wei, H. et al. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J. Biol. Chem. 276, 1570–1577 (2001)

    Article  CAS  Google Scholar 

  12. Turowski, P., Fernandez, A., Favre, B., Lamb, N. J. & Hemmings, B. A. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J. Cell Biol. 129, 397–410 (1995)

    Article  CAS  Google Scholar 

  13. Sontag, E. et al. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J. Neuropathol. Exp. Neurol. 63, 1080–1091 (2004)

    Article  CAS  Google Scholar 

  14. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15, 34–41 (2005)

    Article  CAS  Google Scholar 

  15. Letourneux, C., Rocher, G. & Porteu, F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J. 25, 727–738 (2006)

    Article  CAS  Google Scholar 

  16. Ito, A. et al. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 19, 562–571 (2000)

    Article  CAS  Google Scholar 

  17. Seeling, J. M. et al. Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283, 2089–2091 (1999)

    Article  ADS  CAS  Google Scholar 

  18. McCright, B. & Virshup, D. M. Identification of a new family of protein phosphatase 2A regulatory subunits. J. Biol. Chem. 270, 26123–26128 (1995)

    Article  CAS  Google Scholar 

  19. Chen, W. et al. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136 (2004)

    Article  CAS  Google Scholar 

  20. Perrotti, D. & Neviani, P. ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. Br. J. Cancer 95, 775–781 (2006)

    Article  CAS  Google Scholar 

  21. Goldberg, J. et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376, 745–753 (1995)

    Article  ADS  CAS  Google Scholar 

  22. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999)

    Article  CAS  Google Scholar 

  23. Griffith, J. P. et al. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12–FK506 complex. Cell 82, 507–522 (1995)

    Article  CAS  Google Scholar 

  24. Cai, L., Chu, Y., Wilson, S. E. & Schlender, K. K. A metal-dependent form of protein phosphatase 2A. Biochem. Biophys. Res. Commun. 208, 274–279 (1995)

    Article  CAS  Google Scholar 

  25. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N. & Walter, G. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol. Cell. Biol. 17, 1692–1701 (1997)

    Article  CAS  Google Scholar 

  26. Ruediger, R. et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol. Cell. Biol. 12, 4872–4882 (1992)

    Article  CAS  Google Scholar 

  27. Ruediger, R., Pham, H. T. & Walter, G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aα subunit gene. Oncogene 20, 10–15 (2001)

    Article  CAS  Google Scholar 

  28. Turowski, P., Favre, B., Campbell, K. S., Lamb, N. J. & Hemmings, B. A. Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65α. Eur. J. Biochem. 248, 200–208 (1997)

    Article  CAS  Google Scholar 

  29. Wang, S. S. et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science 282, 284–287 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Ruediger, R., Fields, K. & Walter, G. Binding specificity of protein phosphatase 2A core enzyme for regulatory B subunits and T antigens. J. Virol. 73, 839–842 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikehara, T., Shinjo, F., Ikehara, S., Imamura, S. & Yasumoto, T. Baculovirus expression, purification, and characterization of human protein phosphatase 2A catalytic subunits α and β. Protein Expr. Purif. 45, 150–156 (2006)

    Article  CAS  Google Scholar 

  32. Philips, M. R. Methotrexate and Ras methylation: a new trick for an old drug?. Sci. STKE 2004, pe13 (2004)

    PubMed  Google Scholar 

  33. Chen, J., Martin, B. L. & Brautigan, D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261–1264 (1992)

    Article  ADS  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  35. Smith, G. D. et al. The use of SnB to determine an anomalous scattering substructure. Acta Crystallogr. D 54, 799–804 (1998)

    Article  CAS  Google Scholar 

  36. De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  37. Cowtan, K. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Prot. Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  38. McRee, D. E. XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  40. Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D 55, 247–255 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Morrone, F. Gao and other laboratory members and rotation students for help with this work. We are grateful to J. Abendroth for advice on crystallographic computation, and the staff at ALS beamline 5.0.2 for assistance with data collection. We also thank D. Virshup and X. Liu for B56 cDNAs, and N. Zheng, D. Virshup and E. Ogris for critical comments on this manuscript. This work was supported in part by an Investigator’s Award from the Burroughs Welcome Fund to W.X. and by the Keck Center for Pathogenesis at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqing Xu.

Ethics declarations

Competing interests

Coordinates and structure factors are deposited in the Protein Data Bank under accession code 2IAE. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Figures 1–9 and additional references. The Supplementary Methods describes the detailed methods of protein purification, crystallization, and structural determination. (PDF 1006 kb)

Supplementary Table

This table contains the summary of crystallographic analysis. (PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, U., Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445, 53–57 (2007). https://doi.org/10.1038/nature05351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing