Light in tiny holes

Article metrics


The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes and wavelength filtering. These intriguing effects are now known to be due to the interaction of the light with electronic resonances in the surface of the metal film, and they can be controlled by adjusting the size and geometry of the holes. This knowledge is opening up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical sensing and biophysics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Optical transmission properties of single holes in metal films.
Figure 2: Schematic diagram of the fluorescence correlation spectroscopy in a single hole.
Figure 3: Optical properties of single apertures surrounded by periodic corrugations.
Figure 4: Ultrafast miniature photodetector.
Figure 5: Transmission spectrum of hole arrays.
Figure 6: Holes in a dimple array generating the letters ‘hν’ in transmission.
Figure 7: Infrared enhanced vibrational spectra.


  1. 1

    Grimaldi, F.-M. in Physico-mathesis de Lumine, Coloribus, et Iride, Aliisque Sequenti Pagina Indicatis 9 (Bologna, 1665)

  2. 2

    Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

  3. 3

    Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–194 (1992)

  4. 4

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

  5. 5

    Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

  6. 6

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

  7. 7

    Roberts, A. Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J. Opt. Soc. Am. A 4, 1970–1983 (1987)

  8. 8

    Gordon, R. & Brolo, A. Increased cut-off wavelength for a subwavelength hole in a real metal. Opt. Express 13, 1933–1938 (2005)

  9. 9

    Obermüller, C. & Karrai, K. Far-field characterization of diffracting apertures. Appl. Phys. Lett. 67, 3408–3410 (1995)

  10. 10

    Degiron, A., Lezec, H. J., Yamamoto, N. & Ebbesen, T. W. Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. 239, 61–66 (2004)

  11. 11

    Yin, L. et al. Surface palsmons at single nanoholes in Au films. Appl. Phys. Lett. 85, 467–469 (2004)

  12. 12

    Garcia-Vidal, F. J., Moreno, E., Porto, J. A. & Martin-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005)

  13. 13

    Chang, C.-W., Sarychev, A. K. & Shalaev, V. M. Light diffraction by a subwavelength circular aperture. Laser Phys. Lett. 2, 351–355 (2005)

  14. 14

    Popov, E. et al. Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Appl. Opt. 44, 2332–2337 (2005)

  15. 15

    Webb, K. J. & Li, J. Analysis of transmission through small apertures in conducting films. Phys. Rev. B 73, 033401 (2006)

  16. 16

    Garcia de Abajo, F. J. Light transmission through a single cylindrical hole in a metallic film. Opt. Express 10, 1475–1484 (2002)

  17. 17

    Magde, D., Elson, E. & Webb, W. W. Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–707 (1972)

  18. 18

    Levene, M. J. et al. Zero-mode waveguides for single molecule analysis at high concentrations. Science 299, 682–686 (2003)

  19. 19

    Rignault, H. et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005)

  20. 20

    Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)

  21. 21

    Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001)

  22. 22

    Degiron, A. & Ebbesen, T. W. Analysis of the transmission process through single apertures surrounded by periodic corrugations. Opt. Express 12, 3694–3700 (2004)

  23. 23

    Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003)

  24. 24

    Garcia-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martin-Moreno, L. Multiple paths to enhance optical transmission through a subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003)

  25. 25

    Garcia-Vidal, F. J., Martin-Moreno, L., Lezec, H. J. & Ebbesen, T. W. Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003)

  26. 26

    Yu, L.-B. et al. Physical origin of directional beaming from a subwavelength slit. Phys. Rev. B 71, 041405(R) (2005)

  27. 27

    Ishi, T., Fujikata, J. & Ohashi, K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating. Jpn J. Appl. Phys. 44, L170–L172 (2005)

  28. 28

    Sun, Z. & Kim, H. K. Refractive transmission of light and beam shaping with metallic nano-optics lenses. Appl. Phys. Lett. 85, 642–644 (2004)

  29. 29

    Gbur, G., Schouten, H. F. & Visser, T. D. Achieving superresolution in near-field optical data readout systems using surface plasmons. Appl. Phys. Lett. 87, 191109 (2005)

  30. 30

    Fujikata, J. et al. Surface plasmon enhancement effect and its application to near-field optical recording. Trans. Magn. Soc. Jpn 4, 255–259 (2004)

  31. 31

    Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003)

  32. 32

    Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 44, L364–L366 (2005)

  33. 33

    Degiron, A., Lezec, H. J., Barnes, W. L. & Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 81, 4327–4329 (2002)

  34. 34

    Bravo-abad, J. et al. How light emerges from an illuminated array of subwavelength holes. Nature Phys. 2, 120–123 (2006)

  35. 35

    Porto, J. A., Garcia-Vidal, F. J. & Pendry, J. B. Transmission resonances on metalllic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

  36. 36

    Strelniker, Y. M. & Bergman, D. J. Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field. Phys. Rev. B 59, R12763 (1999)

  37. 37

    Martin-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)

  38. 38

    Popov, E., Neviere, M., Enoch, S. & Reinisch, R. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100 (2000)

  39. 39

    Barbara, A., Quemerais, P., Bustarret, E. & Lopez-Rios, T. Optical transmission through subwavelength metallic gratings. Phys. Rev. B 66, 161403(R) (2002)

  40. 40

    Baida, F. I. & Van Labeke, D. Light transmission by subwavelength annular aperture arrays in metallic films. Opt. Commun. 209, 17–22 (2002)

  41. 41

    Sarychev, A. K., Podolskiy, V. A., Dykhne, A. M. & Shalaev, V. M. Resonance transmittance through a metal film with subwavelength holes. IEEE J. Quant. Elect. 38, 956–963 (2002)

  42. 42

    Sarrazin, M., Vigneron, J. P. & Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003)

  43. 43

    Genet, C., van Exter, M. P. & Woerdman, J. P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003)

  44. 44

    Zayats, A. V., Salomon, L. & de Fornel, F. How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals. J. Microsc. 210, 344–349 (2003)

  45. 45

    Lalanne, P., Rodier, J. C. & Hugonin, J. P. Surface plasmons of metallic surfaces perforated by nanohole arrays. J. Opt. Pure Appl. Opt. 7, 422–426 (2005)

  46. 46

    Lomakin, V. & Michielssen, E. Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs. Phys. Rev. B 71, 235117 (2005)

  47. 47

    Müller, R., Malyarchuk, V. & Lienau, C. Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes. Phys. Rev. B 68, 205415 (2003)

  48. 48

    Takakura, Y. Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86, 5601–5603 (2001)

  49. 49

    Shipman, S. P. & Venakides, S. Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E 71, 026611 (2005)

  50. 50

    Shen, J. T., Catrysse, P. B. & Fan, S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 197401 (2005)

  51. 51

    Xie, Y., Zakharian, A. R., Moloney, J. V. & Mansuripur, M. Transmission of light through slit apertures in metallic films. Opt. Express 12, 6106–6121 (2004)

  52. 52

    Lee, K. G. & Park, Q.-H. Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys. Rev. Lett. 95, 103902 (2005)

  53. 53

    Marquier, F., Greffet, J.-J., Collin, S., Pardo, F. & Pelouard, J. L. Resonant transmission through metallic film due to coupled modes. Opt. Express 13, 70–76 (2005)

  54. 54

    Skigin, D. C. & Depine, R. A. Transmission resonances of metallic compound gratings with subwavelength slits. Phys. Rev. Lett. 95, 217402 (2005)

  55. 55

    Kim, K. Y., Cho, Y. K., Tae, H. S. & Lee, J.-H. Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics. Opt. Express 14, 320–330 (2006)

  56. 56

    Liu, W.-C. & Tsai, D. P. Optical tunnelling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys. Rev. B 65, 155423 (2005)

  57. 57

    Garcia de Abajo, F. J., Saenz, J. J., Campillo, I. & Dolado, J. S. Site and lattice resonances in metallic hole arrays. Opt. Express 14, 7–18 (2006)

  58. 58

    Chang, S.-H., Gray, S. K. & Schatz, G. C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13, 3150–3165 (2005)

  59. 59

    Bravo-Abad, J., Garcia-Vidal, F. J. & Martin-Moreno, L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys. Rev. Lett. 93, 227401 (2005)

  60. 60

    Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W. & Lezec, H. J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58, 6779–6782 (1998)

  61. 61

    Sun, Z., Jung, Y. S. & Kim, H. K. Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl. Phys. Lett. 83, 3021–3023 (2003)

  62. 62

    Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

  63. 63

    Prikulis, J., Hanarp, P., Olofsson, L., Sutherland, D. & Kall, M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 4, 1003–1007 (2004)

  64. 64

    Klein Koerkamp, K. J., Enoch, S., Segerink, F. B., van Hulst, N. F. & Kuipers, L. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004)

  65. 65

    Degiron, A. & Ebbesen, T. W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. Pure Appl. Opt. 7, S90–S96 (2005)

  66. 66

    Gordon, R. et al. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004)

  67. 67

    Ye, Y.-H. & Zhang, J.-Y. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays. Opt. Lett. 30, 1521–1523 (2005)

  68. 68

    Krasavin, A. V. et al. Polarization conversion and “focusing” of light propagating through a small chiral hole in a metallic screen. Appl. Phys. Lett. 86, 201105 (2005)

  69. 69

    Wang, Q.-J., Li, J.-Q., Huang, C.-P., Zhang, C. & Zhu, Y.-Y. Enhanced optical transmission through metal films with rotation-symmetrical hole arrays. Appl. Phys. Lett. 87, 091105 (2005)

  70. 70

    Ropers, C. et al. Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 94, 113901 (2005)

  71. 71

    Dogariu, A., Thio, T., Wang, L. J., Ebbesen, T. W. & Lezec, H. J. Delay in light transmission through small apertures. Opt. Lett. 26, 450–452 (2001)

  72. 72

    Halté, V., Benabbas, A., Guidoni, L. & Bigot, J.-Y. Femtosecond dynamics of the transmission of gold arrays of subwavelength holes. Phys. Status Solidi (b). 242, 1872–1876 (2005)

  73. 73

    Dechant, A. & Elezzabi, A. Y. Femtosecond optical pulse propagation in subwavelength metallic slits. Appl. Phys. Lett. 84, 4678–4680 (2004)

  74. 74

    Kwak, E.-S. et al. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 5, 1963–1967 (2005)

  75. 75

    Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

  76. 76

    Egorov, D., Dennis, B. S., Blumberg, G. & Haftel, M. I. Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys. Rev. B 70, 033404 (2004)

  77. 77

    Chyan, J. Y., Chang, C. A. & Yeh, J. A. Development and characterization of a broad-bandwidth polarization-insensitive subwavelength optical device. Nanotechnology 17, 40–44 (2006)

  78. 78

    Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)

  79. 79

    Altewischer, E., van Exter, M. P. & Woerdman, J. P. Polarization analysis of propagating surface plasmons in a subwavelength hole array. J. Opt. Soc. Am. B 20, 1927–1931 (2003)

  80. 80

    Williams, S. M. et al. Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide. J. Phys. Chem. B 108, 11833–11837 (2004)

  81. 81

    Brolo, A. G. et al. Enhanced fluorescence from arrays of nanoholes in a gold film. J. Am. Chem. Soc. 127, 14936–14941 (2005)

  82. 82

    Liu, Y., Bishop, J., Williams, L., Blair, S. & Herron, J. Biosensing based upon molecular confinement in a metallic nanocavity arrays. Nanotechnology 15, 1368–1374 (2004)

  83. 83

    Brolo, A. G., Gordon, R., Leathem, B. & Kavanagh, K. L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)

  84. 84

    Moran, C. E., Steele, J. M. & Halas, N. J. Chemical and dielectric manipulation of plasmonic band gap of metallodielectric arrays. Nano Lett. 4, 1497–1500 (2004)

  85. 85

    Stark, P. R. H., Halleck, A. E. & Larson, D. N. Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37, 37–47 (2005)

  86. 86

    Brolo, A. G., Arctander, E., Gordon, R., Leathem, B. & Kavanagh, K. L. Nanohole-enhanced Raman scattering. Nano Lett. 4, 2015–2018 (2004)

  87. 87

    Williams, S. M. et al. Scaffolding for nanotechnology: extraordinary infrared transmission of microarrays for stacked sensors and surface spectroscopy. Nanotechnology 15, S495–S503 (2004)

  88. 88

    Coe, J. V. et al. Extra IR transmission with metallic arrays of subwavelength holes. Anal. Chem. 78, 1385–1389 (2006)

  89. 89

    Rindzevicius, T. et al. Plamsonic sensing characteristics of single nanometric holes. Nano Lett. 5, 2335–2339 (2005)

  90. 90

    Dintinger, J., Klein, S. & Ebbesen, T. W. Molecule–surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes and all-optical switching. Adv. Mat. 18, 1267–1270 (2006)

  91. 91

    Gomez Rivas, J., Schotsch, C., Haring Bolivar, P. & Kurz, H. Enhanced transmission of Thz radiation through subwavelength holes. Phys. Rev. B 68, 201306(R) (2003)

  92. 92

    Shou, X., Agrawal, A. & Nahata, A. Role of metal thickness on the enhanced transmission properties of a periodic array of subwavelength apertures. Opt. Express 13, 9834–9840 (2005)

  93. 93

    Lockyear, M. J., Hibbins, A. P. & Sambles, J. R. Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture. Appl. Phys. Lett. 84, 2040–2042 (2004)

  94. 94

    Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

  95. 95

    Garcia-Vidal, F. J., Martin-Moreno, L. & Pendry, J. B. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. Pure Appl. Opt. 7, S97–S101 (2005)

  96. 96

    Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006)

  97. 97

    Visser, T. D. Surface plasmons at work? Nature Phys. 2, 509–510 (2006)

  98. 98

    Gruhlke, R., Hod, W. & Hall, D. Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film. Phys. Rev. Lett. 56, 2838–2841 (1986)

  99. 99

    Bonod, N., Enoch, S., Li, L., Popov, E. & Nevière, M. Resonant optical transmission through thin metallic films with and without holes. Opt. Express 11, 482–490 (2003)

  100. 100

    Liu, C., Kamaev, V. & Vardeny, Z. V. Efficency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Appl. Phys. Lett. 86, 143501 (2005)

  101. 101

    Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004)

  102. 102

    Luo, X. & Ishihara, T. Sub-100nm photolithography based on plasmon resonance. Jpn J. Appl. Phys. 43, 4017–4021 (2004)

  103. 103

    Shao, D. B. & Che, S. C. Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)

  104. 104

    Kim, T. J., Thio, T., Ebbesen, T. W., Grupp, D. E. & Lezec, H. J. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt. Lett. 24, 256–258 (1999)

  105. 105

    Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006)

  106. 106

    Altewisher, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002)

  107. 107

    Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005)

  108. 108

    Moreno, E., Fernandez-Dominguez, A. I., Cirac, I. J., Garcia-Vidal, F. J. & Martin-Moreno, L. Resonant transmission of cold atoms through subwavelength apertures. Phys. Rev. Lett. 95, 170406 (2005)

Download references


Our research was supported by the European Community, Network of Excellence PLASMO-NANO-DEVICES, STREP SPP, the ANR grant COEXUS, the CNRS, and the French Ministry of Higher Education and Research.

Author information

Correspondence to T. W. Ebbesen.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Genet, C., Ebbesen, T. Light in tiny holes. Nature 445, 39–46 (2007) doi:10.1038/nature05350

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.