Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-speed linear optics quantum computing using active feed-forward

Abstract

As information carriers in quantum computing1, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon–photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations2,3. In one-way quantum computation4,5,6,7,8, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of the experimental set-up.
Figure 2: Active feed-forward of two different single-qubit rotations.
Figure 3: Feed-forward of a two-qubit operation.
Figure 4: Demonstration of Grover’s search algorithm with feed-forward.

Similar content being viewed by others

References

  1. Bennett, C. & DiVicenzo, D. Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Raussendorf, R., Brown, D. E. & Briegel, H. J. The one-way quantum computer – a non-network model of quantum computation. J. Mod. Opt. 49, 1299–1306 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nielsen, M. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  8. Aliferis, P. & Leung, D. Computation by measurements: A unifying picture. Phys. Rev. A 70, 062314 (2004)

    Article  ADS  Google Scholar 

  9. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

    Article  ADS  Google Scholar 

  11. Zhang, A. N. et al. Experimental construction of optical multiqubit cluster states from Bell states. Phys. Rev. A 73, 022330 (2006)

    Article  ADS  Google Scholar 

  12. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of feed-forward control for linear optics quantum computation. Phys. Rev. A 66, 052305 (2002)

    Article  ADS  Google Scholar 

  13. Giacomini, S., Sciarrino, F., Lombardi, E. & DeMartini, F. Active teleportation of a quantum bit. Phys. Rev. A 66, 030302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ursin, R. et al. Quantum teleportation link across the Danube. Nature 430, 849 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Grover, L. K. Quantum mechanics helps in search for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  CAS  Google Scholar 

  16. White, A. G., James, D. F. V., Eberhard, P. H. & Kwiat, P. G. Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999)

    Article  ADS  CAS  Google Scholar 

  17. James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  18. Toth, G. & Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005)

    Article  ADS  Google Scholar 

  19. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Nielsen, M. & Chuang, I. L. Quantum Compuation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000)

    Google Scholar 

  23. Nielsen, M. Journal club notes on the cluster-state model of quantum computation. 〈http://www.qinfo.org/qc-by-measurement/cluster-state.pdf〉 (2003)

  24. Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  25. Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Shor, P. W. in Proc. 35th Annual Symp. on Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society Press, Los Alamitos, 1994)

  27. Ahn, J., Weinacht, T. C. & Bucksbaum, P. H. Information storage and retrieval through quantum phase. Science 287, 463–465 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  29. Hein, M., Eisert, J. & Briegel, H. J. Multi-party entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  30. Soudagar, Y. et al. Cluster state quantum computing in optical fibres. Preprint at 〈http://arxiv.org/quant-ph/0605111〉 (2006)

Download references

Acknowledgements

We are grateful to M. Aspelmeyer, Č. Brukner, J. I. Cirac, J. Kofler and K. Resch for discussions as well as to T. Bergmann and G. Mondl for assistance with the electronics. R.P. thanks E.-M. Röttger for assistance in the laboratory. We acknowledge financial support from the Austrian Science Fund (FWF), the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST directorate and the DTO-funded US Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Prevedel or Anton Zeilinger.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prevedel, R., Walther, P., Tiefenbacher, F. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007). https://doi.org/10.1038/nature05346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing