Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A deep dynamo generating Mercury’s magnetic field


Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury’s large iron core is the most probable cause. However, the low intensity of Mercury’s magnetic field—about 1% the strength of the Earth’s field—cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos1, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core–mantle boundary is subadiabatic2,3, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet’s slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury’s surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Case I.
Figure 2: Magnetic field spectral components of case I.
Figure 3: Magnetic field spectral components of case II.


  1. 1

    Stevenson, D. J. Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Schubert, G., Ross, M. N., Stevenson, D. J. & Spohn, T. Mercury’s thermal history and the generation of its magnetic field. In Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) 429–460 (Univ. Arizona Press, Tucson, 1988)

    Google Scholar 

  3. 3

    Hauck, S. A., Dombard, A. J., Phillips, R. J. & Solomon, S. C. Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222, 713–728 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ness, N. F. The magnetic field of Mercury. Phys. Earth Planet. Inter. 20, 209–217 (1979)

    ADS  Article  Google Scholar 

  5. 5

    Connerney, J. E. P. & Ness, N. F. Mercury’s magnetic field and interior. In Mercury (eds Vilas, F., Chapman, C. R. & Matthews, M. S.) 494–513 (Univ. Arizona Press, Tucson, 1988)

    Google Scholar 

  6. 6

    Aharonson, O., Zuber, M. T. & Solomon, S. C. Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field?. Earth Planet. Sci. Lett. 218, 261–268 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. & Gomez Perez, N. A numerical study of dynamo action as function of spherical shell geometry. Earth Planet. Sci. Lett. 236, 542–557 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Stanley, S., Bloxham, J., Hutchinson, W. E. & Zuber, M. T. Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Takahashi, F. & Matsushima, M. Dipolar and non-dipolar dynamos in thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33 L10202 doi: 10.1029/2006GL02579 (2006)

    ADS  Article  Google Scholar 

  11. 11

    Turner, J. S. Buoyancy Effects in Fluids Ch. 8 (Cambridge Univ. Press, Cambridge, 1973)

    Book  Google Scholar 

  12. 12

    Braginsky, S. I. & Roberts, P. H. Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995)

    ADS  Article  Google Scholar 

  13. 13

    Lister, J. R. & Buffett, B. A. The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91, 17–30 (1995)

    ADS  Article  Google Scholar 

  14. 14

    Kutzner, C. & Christensen, U. R. Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int. 157, 1105–1118 (2004)

    ADS  Article  Google Scholar 

  15. 15

    Olson, P. & Christensen, U. R. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Zhang, K. & Schubert, G. Teleconvection: remotely driven thermal convection in rotating stratified spherical layers. Science 290, 1944–1947 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Olsen, N. et al. CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Christensen, U. R. & Tilgner, A. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Stevenson, D. J. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21, 113–127 (1982)

    ADS  Article  Google Scholar 

  20. 20

    Hollerbach, R. & Jones, C. A. Influence of the Earth’s inner core on geomagnetic fluctuations and reversals. Nature 365, 541–543 (1993)

    ADS  Article  Google Scholar 

  21. 21

    Van Hoolst, T. & Jacobs, C. Mercury’s tides and internal structure. J. Geophys. Res. 108 5121 doi: 10.1029/2003JE002126 (2003)

    Article  Google Scholar 

  22. 22

    Peale, S. J., Phillips, R. J., Solomon, S. C., Smith, D. E. & Zuber, M. T. A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci. 37, 1269–1283 (2002)

    ADS  CAS  Article  Google Scholar 

Download references


Constructive reviews by S. Stanley and D. Stevenson are appreciated.

Author information



Corresponding author

Correspondence to Ulrich R. Christensen.

Ethics declarations

Competing interests

Reprints and permissions information is available at The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, U. A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing