Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of the bacterial cell cycle by an integrated genetic circuit

Abstract

How bacteria regulate cell cycle progression at a molecular level is a fundamental but poorly understood problem. In Caulobacter crescentus, two-component signal transduction proteins are crucial for cell cycle regulation, but the connectivity of regulators involved has remained elusive and key factors are unidentified. Here we identify ChpT, an essential histidine phosphotransferase that controls the activity of CtrA, the master cell cycle regulator. We show that the essential histidine kinase CckA initiates two phosphorelays, each requiring ChpT, which lead to the phosphorylation and stabilization of CtrA. Downregulation of CckA activity therefore results in the dephosphorylation and degradation of CtrA, which in turn allow the initiation of DNA replication. Furthermore, we show that CtrA triggers its own destruction by promoting cell division and inducing synthesis of the essential regulator DivK, which feeds back to downregulate CckA immediately before S phase. Our results define a single integrated circuit whose components and connectivity can account for the cell cycle oscillations of CtrA in Caulobacter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Identification and in vitro reconstitution of two phosphorelays controlling CtrA.
Figure 2: chpT encodes a histidine phosphotransferase that is essential for viability and phenocopies ctrAts and cckAts.
Figure 3: DivK˜P triggers the G1–S transition by causing inactivation and delocalization of CckA.
Figure 4: Schematic of cell cycle regulation in Caulobacter.

References

  1. 1

    McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Skerker, J. M. & Laub, M. T. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus.. Nature Rev. Microbiol. 2, 325–337 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Ohta, N., Grebe, T. W. & Newton, A. in Prokaryotic Development (eds Brun, Y. V. & Shimkets, L. J.) 341–359 (ASM Press, Washington DC, 2000)

    Google Scholar 

  5. 5

    Domian, I. J., Quon, K. C. & Shapiro, L. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415–424 (1997)

    CAS  Article  Google Scholar 

  6. 6

    Quon, K. C., Marczynski, G. T. & Shapiro, L. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84, 83–93 (1996)

    CAS  Article  Google Scholar 

  7. 7

    Quon, K. C., Yang, B., Domian, I. J., Shapiro, L. & Marczynski, G. T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl Acad. Sci. USA 95, 120–125 (1998)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Holtzendorff, J. et al. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983–987 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Laub, M. T., Chen, S. L., Shapiro, L. & McAdams, H. H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl Acad. Sci. USA 99, 4632–4637 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Domian, I. J., Reisenauer, A. & Shapiro, L. Feedback control of a master bacterial cell-cycle regulator. Proc. Natl Acad. Sci. USA 96, 6648–6653 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Holtzendorff, J., Reinhardt, J. & Viollier, P. H. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus. Bioessays 28, 355–361 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Jenal, U. & Fuchs, T. An essential protease involved in bacterial cell-cycle control. EMBO J. 17, 5658–5669 (1998)

    CAS  Article  Google Scholar 

  14. 14

    Jacobs, C., Domian, I. J., Maddock, J. R. & Shapiro, L. Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97, 111–120 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Jacobs, C., Ausmees, N., Cordwell, S. J., Shapiro, L. & Laub, M. T. Functions of the CckA histidine kinase in Caulobacter cell cycle control. Mol. Microbiol. 47, 1279–1290 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Hecht, G. B., Lane, T., Ohta, N., Sommer, J. M. & Newton, A. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus.. EMBO J. 14, 3915–3924 (1995)

    CAS  Article  Google Scholar 

  17. 17

    Wu, J., Ohta, N. & Newton, A. An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.. Proc. Natl Acad. Sci. USA 95, 1443–1448 (1998)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Wheeler, R. T. & Shapiro, L. Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol. Cell 4, 683–694 (1999)

    CAS  Article  Google Scholar 

  19. 19

    Jacobs, C., Hung, D. & Shapiro, L. Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. Proc. Natl Acad. Sci. USA 98, 4095–4100 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. 3, e334 (2005)

    Article  Google Scholar 

  21. 21

    Biondi, E. G. et al. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus.. Mol. Microbiol. 59, 386–401 (2006)

    CAS  Article  Google Scholar 

  22. 22

    Meisenzahl, A. C., Shapiro, L. & Jenal, U. Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus.. J. Bacteriol. 179, 592–600 (1997)

    CAS  Article  Google Scholar 

  23. 23

    Iniesta, A. A., McGrath, P. T., Reisenauer, A., McAdams, H. H. & Shapiro, L. A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl Acad. Sci. USA 103, 10935–10940 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hung, D. Y. & Shapiro, L. A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression. Proc. Natl Acad. Sci. USA 99, 13160–13165 (2002)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Matroule, J. Y., Lam, H., Burnette, D. T. & Jacobs-Wagner, C. Cytokinesis monitoring during development; rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter. Cell 118, 579–590 (2004)

    CAS  Article  Google Scholar 

  26. 26

    Lam, H., Matroule, J. Y. & Jacobs-Wagner, C. The asymmetric spatial distribution of bacterial signal transduction proteins coordinates cell cycle events. Dev. Cell 5, 149–159 (2003)

    CAS  Article  Google Scholar 

  27. 27

    Pierce, D. L. et al. Mutations in DivL and CckA rescue a divJ null mutant of Caulobacter crescentus by reducing the activity of CtrA. J. Bacteriol. 188, 2473–2482 (2006)

    CAS  Article  Google Scholar 

  28. 28

    Wang, Y., Jones, B. D. & Brun, Y. V. A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol. Microbiol. 40, 347–360 (2001)

    CAS  Article  Google Scholar 

  29. 29

    Wortinger, M., Sackett, M. J. & Brun, Y. V. CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. EMBO J. 19, 4503–4512 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Sciochetti, S. A., Lane, T., Ohta, N. & Newton, A. Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus. J. Bacteriol. 184, 6037–6049 (2002)

    CAS  Article  Google Scholar 

  31. 31

    Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Collier, J., Murray, S. R. & Shapiro, L. DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J. 25, 346–356 (2006)

    CAS  Article  Google Scholar 

  33. 33

    Murray, A. W. & Kirschner, M. W. Dominoes and clocks: the union of two views of the cell cycle. Science 246, 614–621 (1989)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Cross, F. R. Two redundant oscillatory mechanisms in the yeast cell cycle. Dev. Cell 4, 741–752 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y.S. Liu and K. Thorn for help with microscopy, and K. Thorn, A. Komeili, L. Garwin and A. Murray for discussions and/or comments on the manuscript. We acknowledge support from the Office of Science (BER), US Department of Energy (M.T.L.) and the US National Science Foundation (K.R.R.). Support was also provided in part by an NIH NIGMS Center of Excellence grant to Harvard University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael T. Laub.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Notes 1–3, Supplementary Figures 1–12, and Supplemental Tables 1 and 3. Supplementary Table 2 is provided separately. (PDF 7624 kb)

Supplemental Table 2

This file contains microarray data from the paper. (XLS 612 kb)

Supplementary Data

This file contains the key genes and proteins used in this study. (DOC 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biondi, E., Reisinger, S., Skerker, J. et al. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444, 899–904 (2006). https://doi.org/10.1038/nature05321

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing