Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases

Abstract

Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of mitochondria in apoptosis and ageing.
Figure 2: Role of mitochondria in reactive oxygen species metabolism.
Figure 3: The role of mitochondria in ageing-related neurodegenerative diseases.

Similar content being viewed by others

References

  1. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Corral-Debrinski, M. et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet. 2, 324–329 (1992).

    CAS  PubMed  Google Scholar 

  3. Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chinnery, P. F. et al. Point mutations of the mtDNA control region in normal and neurodegenerative human brains. Am. J. Hum. Genet. 68, 529–532 (2001).

    CAS  PubMed  Google Scholar 

  5. Simon, D. K. et al. Low mutational burden of individual acquired mitochondrial DNA mutations in brain. Genomics 73, 113–116 (2001).

    CAS  PubMed  Google Scholar 

  6. Lin, M. T., Simon, D. K., Ahn, C. H., Kim, L. M. & Beal, M. F. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum. Mol. Genet. 11, 133–145 (2002).

    CAS  PubMed  Google Scholar 

  7. Jazin, E. E., Cavelier, L., Eriksson, I., Oreland, L. & Gyllensten, U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc. Natl Acad. Sci. USA 93, 12382–12387 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genet. 38, 515–517 (2006).

    MathSciNet  CAS  PubMed  Google Scholar 

  9. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genet. 38, 518–520 (2006).

    CAS  PubMed  Google Scholar 

  10. Trifunovic, A. Mitochondrial DNA and ageing. Biochim. Biophys. Acta 1757, 611–617 (2006).

    CAS  PubMed  Google Scholar 

  11. Andreyev, A. Y., Kushnareva, Y. E. & Starkov, A. A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.) 70, 200–214 (2005).

    CAS  Google Scholar 

  12. Sun, J., Folk, D., Bradley, T. J. & Tower, J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161, 661–672 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruan, H. et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl Acad. Sci. USA 99, 2748–2753 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    ADS  CAS  PubMed  Google Scholar 

  16. Nunomura, A. et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767 (2001).

    CAS  PubMed  Google Scholar 

  17. Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q. & Lee, V. M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Reddy, P. H. et al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum. Mol. Genet. 13, 1225–1240 (2004).

    CAS  PubMed  Google Scholar 

  19. Ohyagi, Y. et al. Selective increase in cellular A β 42 is related to apoptosis but not necrosis. Neuroreport 11, 167–171 (2000).

    CAS  PubMed  Google Scholar 

  20. Busciglio, J. et al. Altered metabolism of the amyloid β precursor protein is associated with mitochondrial dysfunction in Down's syndrome. Neuron 33, 677–688 (2002).

    CAS  PubMed  Google Scholar 

  21. Li, F. et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem. 89, 1308–1312 (2004).

    CAS  PubMed  Google Scholar 

  22. Velliquette, R. A., O'Connor, T. & Vassar, R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J. Neurosci. 25, 10874–10883 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamagno, E. et al. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem. 92, 628–636 (2005).

    CAS  PubMed  Google Scholar 

  24. Lovell, M. A., Xiong, S., Xie, C., Davies, P. & Markesbery, W. R. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J. Alzheimers Dis. 6, 659–671 (2004).

    CAS  PubMed  Google Scholar 

  25. Sultana, R. et al. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol. Aging 27, 918–925 (2006).

    CAS  PubMed  Google Scholar 

  26. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    ADS  CAS  PubMed  Google Scholar 

  27. Liou, Y. C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    ADS  CAS  PubMed  Google Scholar 

  28. Swerdlow, R. H. et al. Cybrids in Alzheimer's disease: a cellular model of the disease? Neurology 49, 918–925 (1997).

    CAS  PubMed  Google Scholar 

  29. Elson, J. L. et al. Does the mitochondrial genome play a role in the etiology of Alzheimer's disease? Hum. Genet. 119, 241–254 (2006).

    CAS  PubMed  Google Scholar 

  30. Coskun, P. E., Beal, M. F. & Wallace, D. C. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl Acad. Sci. USA 101, 10726–10731 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anandatheerthavarada, H. K., Biswas, G., Robin, M. A. & Avadhani, N. G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161, 41–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lustbader, J. W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    ADS  CAS  PubMed  Google Scholar 

  33. Crouch, P. J. et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1-42 . J. Neurosci. 25, 672–679 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Manczak, M. et al. Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449 (2006).

    CAS  PubMed  Google Scholar 

  35. Casley, C. S., Canevari, L., Land, J. M., Clark, J. B. & Sharpe, M. A. β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100 (2002).

    CAS  PubMed  Google Scholar 

  36. Gibson, G. E. et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch. Neurol. 45, 836–840 (1988).

    CAS  PubMed  Google Scholar 

  37. Parker, W. D., Filley, C. M. & Parks, J. K. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology 40, 1302–1303 (1990).

    PubMed  Google Scholar 

  38. Park, H. J., Seong, Y. M., Choi, J. Y., Kang, S. & Rhim, H. Alzheimer's disease-associated amyloid β interacts with the human serine protease HtrA2/Omi. Neurosci. Lett. 357, 63–67 (2004).

    CAS  PubMed  Google Scholar 

  39. Hansson, C. A. et al. Nicastrin, presenilin, APH-1, and PEN-2 form active γ-secretase complexes in mitochondria. J. Biol. Chem. 279, 51654–51660 (2004).

    CAS  PubMed  Google Scholar 

  40. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neurosci. 3, 1301–1306 (2000).

    CAS  PubMed  Google Scholar 

  41. Fornai, F. et al. Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin–proteasome system and α-synuclein. Proc. Natl Acad. Sci. USA 102, 3413–3418 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sherer, T. B. et al. Mechanism of toxicity in rotenone models of Parkinson's disease. J. Neurosci. 23, 10756–10764 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schapira, A. H. et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet i, 1269 (1989).

    Google Scholar 

  44. Simon, D. K. et al. Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutation. Neurology 53, 1787–1793 (1999).

    CAS  PubMed  Google Scholar 

  45. Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).

    CAS  PubMed  Google Scholar 

  46. Vives-Bauza, C. et al. Sequence analysis of the entire mitochondrial genome in Parkinson's disease. Biochem. Biophys. Res. Commun. 290, 1593–1601 (2002).

    CAS  PubMed  Google Scholar 

  47. Simon, D. K. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 25, 71–81 (2004).

    CAS  PubMed  Google Scholar 

  48. Pyle, A. et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann. Neurol. 57, 564–567 (2005).

    PubMed  Google Scholar 

  49. Tanaka, M. Mitochondrial genotypes and cytochrome b variants associated with longevity or Parkinson's disease. J. Neurol. 249 (Suppl. 2), II11–II18 (2002).

    PubMed  Google Scholar 

  50. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, D. D., Shults, C. W., Sisk, A., Rockenstein, E. & Masliah, E. Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP. Exp. Neurol. 186, 158–172 (2004).

    CAS  PubMed  Google Scholar 

  52. Martin, L. J. et al. Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Klivenyi, P. et al. Mice lacking α-synuclein are resistant to mitochondrial toxins. Neurobiol. Dis. 21, 541–548 (2006).

    CAS  PubMed  Google Scholar 

  54. Pesah, Y. et al. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131, 2183–2194 (2004).

    CAS  PubMed  Google Scholar 

  55. Palacino, J. J. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18614–18622 (2004).

    CAS  PubMed  Google Scholar 

  56. Muftuoglu, M. et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19, 544–548 (2004).

    PubMed  Google Scholar 

  57. Darios, F. et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum. Mol. Genet. 12, 517–526 (2003).

    ADS  CAS  PubMed  Google Scholar 

  58. Kuroda, Y. et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 15, 883–895 (2006).

    CAS  PubMed  Google Scholar 

  59. Chung, K. K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    ADS  CAS  PubMed  Google Scholar 

  60. Whitworth, A. J. et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc. Natl Acad. Sci. USA 102, 8024–8029 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    ADS  CAS  PubMed  Google Scholar 

  62. Meulener, M. C. et al. DJ-1 is present in a large molecular complex in human brain tissue and interacts with α-synuclein. J. Neurochem. 93, 1524–1532 (2005).

    CAS  PubMed  Google Scholar 

  63. Moore, D. J. et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum. Mol. Genet. 14, 71–84 (2005).

    CAS  PubMed  Google Scholar 

  64. Tang, B. et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum. Mol. Genet. 15, 1816–1825 (2006).

    CAS  PubMed  Google Scholar 

  65. Canet-Aviles, R. M. et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA 101, 9103–9108 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, Y. et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl Acad. Sci. USA 102, 13670–13675 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).

    CAS  PubMed  Google Scholar 

  68. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meulener, M. C., Xu, K., Thompson, L., Ischiropoulos, H. & Bonini, N. M. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc. Natl Acad. Sci. USA 103, 12517–12522 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    ADS  CAS  PubMed  Google Scholar 

  71. Silvestri, L. et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum. Mol. Genet. 14, 3477–3492 (2005).

    CAS  PubMed  Google Scholar 

  72. Petit, A. et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280, 34025–34032 (2005).

    CAS  PubMed  Google Scholar 

  73. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strauss, K. M. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14, 2099–2111 (2005).

    CAS  PubMed  Google Scholar 

  76. Martins, L. M. et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell. Biol. 24, 9848–9862 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29626–29633 (2002).

    CAS  PubMed  Google Scholar 

  78. Damiano, M. et al. Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem. 96, 1349–1361 (2006).

    CAS  PubMed  Google Scholar 

  79. Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jaarsma, D. et al. CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol. (Berl.) 102, 293–305 (2001).

    CAS  Google Scholar 

  81. Higgins, C. M., Jung, C. & Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4, 16 (2003).

    PubMed  PubMed Central  Google Scholar 

  82. Vijayvergiya, C., Beal, M. F., Buck, J. & Manfredi, G. Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J. Neurosci. 25, 2463–2470 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    CAS  PubMed  Google Scholar 

  84. Takeuchi, H., Kobayashi, Y., Ishigaki, S., Doyu, M. & Sobue, G. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J. Biol. Chem. 277, 50966–50972 (2002).

    CAS  PubMed  Google Scholar 

  85. Okado-Matsumoto, A. & Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl Acad. Sci. USA 99, 9010–9014 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30 (2004).

    CAS  PubMed  Google Scholar 

  87. Jenkins, B. G., Koroshetz, W. J., Beal, M. F. & Rosen, B. R. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 43, 2689–2695 (1993).

    CAS  PubMed  Google Scholar 

  88. Gu, M. et al. Mitochondrial defect in Huntington's disease caudate nucleus. Ann. Neurol. 39, 385–389 (1996).

    CAS  PubMed  Google Scholar 

  89. Milakovic, T. & Johnson, G. V. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 280, 30773–30782 (2005).

    CAS  PubMed  Google Scholar 

  90. Brouillet, E. et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl Acad. Sci. USA 92, 7105–7109 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Benchoua, A. et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell 17, 1652–1663 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Panov, A. V. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neurosci. 5, 731–736 (2002).

    CAS  PubMed  Google Scholar 

  93. Choo, Y. S., Johnson, G. V., MacDonald, M., Detloff, P. J. & Lesort, M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13, 1407–1420 (2004).

    CAS  PubMed  Google Scholar 

  94. Luthi-Carter, R. & Cha, J.-H. J. Mechanisms of transcription dysregulation in Huntington's disease. Clin. Neurosci. Res. 3, 165–177 (2003).

    CAS  Google Scholar 

  95. Sugars, K. L. & Rubinsztein, D. C. Transcriptional abnormalities in Huntington disease. Trends Genet. 19, 233–238 (2003).

    CAS  PubMed  Google Scholar 

  96. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  97. Chipuk, J. E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    ADS  CAS  PubMed  Google Scholar 

  98. Bae, B. I. et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47, 29–41 (2005).

    CAS  PubMed  Google Scholar 

  99. Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135 (2004).

    CAS  PubMed  Google Scholar 

  100. Rathke-Hartlieb, S. et al. Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Exp. Neurol. 175, 87–97 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health and the American Federation for Aging Research/Beeson Program. We apologize to our many colleagues whose work we were unable to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flint Beal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Beal, M. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006). https://doi.org/10.1038/nature05292

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05292

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing