Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A century-old debate on protein aggregation and neurodegeneration enters the clinic

Abstract

The correlation between neurodegenerative disease and protein aggregation in the brain has long been recognized, but a causal relationship has not been unequivocally established, in part because a discrete pathogenic aggregate has not been identified. The complexity of these diseases and the dynamic nature of protein aggregation mean that, despite progress towards understanding aggregation, its relationship to disease is difficult to determine in the laboratory. Nevertheless, drug candidates that inhibit aggregation are now being tested in the clinic. These have the potential to slow the progression of Alzheimer's disease, Parkinson's disease and related disorders and could, if administered presymptomatically, drastically reduce the incidence of these diseases. The clinical trials could also settle the century-old debate about causality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibril formation and disease are linked.
Figure 2: Fibrillar deposits are not quantitatively correlated with disease.
Figure 3: Disease and fibril formation may have a common cause.
Figure 4: Better diagnosis and presymptomatic treatment would drastically reduce the incidence and prevalence of neurodegenerative diseases.

Similar content being viewed by others

References

  1. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. Psychisch. Gerichtl. Med. 64, 146–148 (1907).

    Google Scholar 

  2. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    ADS  CAS  PubMed  Google Scholar 

  3. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    CAS  PubMed  Google Scholar 

  4. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    ADS  CAS  PubMed  Google Scholar 

  6. Klunk, W. E. et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-β in Alzheimer's disease brain but not in transgenic mouse brain. J. Neurosci. 25, 10598–10606 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mathis, C. A., Klunk, W. E., Price, J. C. & DeKosky, S. T. Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies. Arch. Neurol. 62, 196–200 (2005).

    PubMed  Google Scholar 

  8. Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    CAS  PubMed  Google Scholar 

  9. Dodart, J. C., Mathis, C., Bales, K. R. & Paul, S. M. Does my mouse have Alzheimer's disease? Genes Brain Behav. 1, 142–155 (2002).

    CAS  PubMed  Google Scholar 

  10. Fernagut, P. O. & Chesselet, M. F. Alpha-synuclein and transgenic mouse models. Neurobiol. Dis. 17, 123–130 (2004).

    CAS  PubMed  Google Scholar 

  11. Roses, A. D. Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu. Rev. Med. 47, 387–400 (1996).

    CAS  PubMed  Google Scholar 

  12. Satoh, J. & Kuroda, Y. A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson's disease in a Japanese population. J. Neurol. Sci. 189, 113–117 (2001).

    CAS  PubMed  Google Scholar 

  13. Jarrett, J. T. & Lansbury, P. T. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    CAS  PubMed  Google Scholar 

  14. Ross, C. A. & Poirier, M. A. Opinion: what is the role of protein aggregation in neurodegeneration? Nature Rev. Mol. Cell Biol. 6, 891–898 (2005).

    CAS  Google Scholar 

  15. Hsiao, K. & Prusiner, S. B. Molecular genetics and transgenic model of Gertsmann-Straussler-Scheinker disease. Alzheimer Dis. Assoc. Disord. 5, 155–162 (1991).

    CAS  PubMed  Google Scholar 

  16. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    ADS  CAS  PubMed  Google Scholar 

  17. Rosen, A. D. Amyotrophic lateral sclerosis. Clinical features and prognosis. Arch. Neurol. 35, 638–642 (1978).

    CAS  PubMed  Google Scholar 

  18. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    CAS  PubMed  Google Scholar 

  19. Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    CAS  PubMed  Google Scholar 

  20. Dickson, D. W. et al. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol. Aging 13, 179–189 (1992).

    CAS  PubMed  Google Scholar 

  21. Kuo, Y. M. et al. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem. 276, 12991–12998 (2001).

    CAS  PubMed  Google Scholar 

  22. Slow, E. J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl Acad. Sci. USA 102, 11402–11407 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    ADS  CAS  PubMed  Google Scholar 

  24. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    ADS  CAS  PubMed  Google Scholar 

  25. Chen, L. & Feany, M. B. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neurosci. 8, 657–663 (2005).

    ADS  CAS  PubMed  Google Scholar 

  26. Bowman, A. B., Yoo, S. Y., Dantuma, N. P. & Zoghbi, H. Y. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin–proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum. Mol. Genet. 14, 679–691 (2005).

    CAS  PubMed  Google Scholar 

  27. Nagy, Z. et al. The effects of additional pathology on the cognitive deficit in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 165–170 (1997).

    CAS  PubMed  Google Scholar 

  28. Roher, A. E. & Kuo, Y. M. Isolation of amyloid deposits from brain. Methods Enzymol. 309, 58–67 (1999).

    CAS  PubMed  Google Scholar 

  29. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    CAS  PubMed  Google Scholar 

  30. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M. & Teplow, D. B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).

    CAS  PubMed  Google Scholar 

  31. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshi, M. et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl Acad. Sci. USA 100, 6370–6375 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quist, A. et al. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc. Natl Acad. Sci. USA 102, 10427–10432 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291 (2002).

    ADS  CAS  PubMed  Google Scholar 

  35. Lashuel, H. et al. Mixtures of wild-type and "Arctic" Aβ40 in vitro accumulate protofibrils, including amyloid pores. J. Mol. Biol. 332, 795–808 (2003).

    CAS  PubMed  Google Scholar 

  36. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    ADS  CAS  PubMed  Google Scholar 

  37. Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. (Lond.) 572, 477–492 (2006).

    CAS  Google Scholar 

  38. Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age onset proteotoxicity. Science advance online publication, 10 August 2006 (doi:10.1126/science.1124646).

  39. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rochet, J. C., Conway, K. A. & Lansbury, P. T. Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse α-synuclein. Biochemistry 39, 10619–10626 (2000).

    CAS  PubMed  Google Scholar 

  41. Poirier, M. A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    CAS  PubMed  Google Scholar 

  42. Anguiano, M., Nowak, R. J. & Lansbury, P. T. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41, 11338–11343 (2002).

    CAS  PubMed  Google Scholar 

  43. Green, J. D., Goldsbury, C., Kistler, J., Cooper, G. S. & Aebi, U. Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. J. Biol. Chem. 279, 12206–12212 (2004).

    CAS  PubMed  Google Scholar 

  44. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    ADS  CAS  PubMed  Google Scholar 

  45. Mukai, H. et al. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc. Natl Acad. Sci. USA 102, 10887–10892 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. J. & Lee, S. J. Characterization of cytoplasmic α-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J. Biol. Chem. 277, 48976–48983 (2002).

    CAS  PubMed  Google Scholar 

  47. Lesne, S. et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357 (2006).

    ADS  CAS  PubMed  Google Scholar 

  48. Riesner, D. et al. Disruption of prion rods generates 10-nm spherical particles having high alpha-helical content and lacking scrapie infectivity. J. Virol. 70, 1714–1722 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roher, A. E. et al. Morphology and toxicity of Aβ-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J. Biol. Chem. 271, 20631–20635 (1996).

    CAS  PubMed  Google Scholar 

  51. Pountney, D. L. et al. Annular α-synuclein species from purified multiple system atrophy inclusions. J. Neurochem. 90, 502–512 (2004).

    CAS  PubMed  Google Scholar 

  52. Lashuel, H. A. & Lansbury, P. T. J. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys. advance online publication 18 September 2006 (doi:10.1017/50033583506004422).

  53. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    CAS  PubMed  Google Scholar 

  54. Chartier-Harlin, M. C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    CAS  PubMed  Google Scholar 

  55. Maraganore, D. M. et al. Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. J. Am. Med. Assoc. 296, 661–670 (2006).

    CAS  Google Scholar 

  56. Nilsberth, C. et al. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nature Neurosci. 4, 887–893 (2001).

    CAS  PubMed  Google Scholar 

  57. Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nature Med. 4, 1318–1320 (1998).

    CAS  PubMed  Google Scholar 

  58. El-Agnaf, O. M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 (1998).

    CAS  PubMed  Google Scholar 

  59. Greenbaum, E. A. et al. The E46K mutation in α-synuclein increases amyloid fibril formation. J. Biol. Chem. 280, 7800–7807 (2005).

    CAS  PubMed  Google Scholar 

  60. Hart, P. J. Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr. Opin. Chem. Biol. 10, 131–138 (2006).

    CAS  PubMed  Google Scholar 

  61. Sato, T. et al. Rapid disease progression correlates with instability of mutant SOD1 in familial ALS. Neurology 65, 1954–1957 (2005).

    CAS  PubMed  Google Scholar 

  62. Perutz, M. F. & Windle, A. H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144 (2001).

    ADS  CAS  PubMed  Google Scholar 

  63. Gusella, J. F. & MacDonald, M. E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nature Rev. Neurosci. 1, 109–115 (2000).

    CAS  Google Scholar 

  64. Lansbury, P. T. Structural neurology: are seeds at the root of neuronal degeneration? Neuron 19, 1151–1154 (1997).

    CAS  PubMed  Google Scholar 

  65. Mayeux, R. et al. Plasma amyloid β-peptide 1-42 and incipient Alzheimer's disease. Ann. Neurol. 46, 412–416 (1999).

    CAS  PubMed  Google Scholar 

  66. Cupers, P. et al. The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein. J. Cell Biol. 154, 731–740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parchi, P. et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 39, 767–778 (1996).

    CAS  PubMed  Google Scholar 

  68. Hand, C. K. et al. Compound heterozygous D90A and D96N SOD1 mutations in a recessive amyotrophic lateral sclerosis family. Ann. Neurol. 49, 267–271 (2001).

    CAS  PubMed  Google Scholar 

  69. Restagno, G. et al. The IVS1 +319 t>a of SOD1 gene is not an ALS causing mutation. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 6, 45–49 (2005).

    CAS  PubMed  Google Scholar 

  70. Hasegawa, K., Yamaguchi, I., Omata, S., Gejyo, F. & Naiki, H. Interaction between A β(1-42) and A β(1-40) in Alzheimer's β-amyloid fibril formation in vitro. Biochemistry 38, 15514–15521 (1999).

    CAS  PubMed  Google Scholar 

  71. Isaacs, A. M., Senn, D. B., Yuan, M., Shine, J. P. & Yankner, B. A. Acceleration of amyloid β-peptide aggregation by physiological concentrations of calcium. J. Biol. Chem. advance online publication 26 July 2006 (doi:10.1074/jbc.M602061200).

  72. Yu, W. et al. Oligomerization of amyloid β-protein occurs during the isolation of lipid rafts. J. Neurosci. Res. 80, 114–119 (2005).

    CAS  PubMed  Google Scholar 

  73. Bitan, G., Fradinger, E. A., Spring, S. M. & Teplow, D. B. Neurotoxic protein oligomers — what you see is not always what you get. Amyloid 12, 88–95 (2005).

    PubMed  Google Scholar 

  74. Hartley, D. M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. White, J. A., Manelli, A. M., Holmberg, K. H., Van Eldik, L. J. & Ladu, M. J. Differential effects of oligomeric and fibrillar amyloid-β 1-42 on astrocyte-mediated inflammation. Neurobiol. Dis. 18, 459–465 (2005).

    CAS  PubMed  Google Scholar 

  76. Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neurosci. 8, 79–84 (2005).

    CAS  PubMed  Google Scholar 

  77. Lindersson, E. et al. Proteasomal inhibition by α-synuclein filaments and oligomers. J. Biol. Chem. 279, 12924–12934 (2004).

    CAS  PubMed  Google Scholar 

  78. Gosavi, N., Lee, H. J., Lee, J. S., Patel, S. & Lee, S. J. Golgi fragmentation occurs in the cells with prefibrillar α-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48984–48992 (2002).

    CAS  PubMed  Google Scholar 

  79. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    ADS  CAS  PubMed  Google Scholar 

  80. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    ADS  CAS  PubMed  Google Scholar 

  81. Kruger, R. et al. Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. Neurology 56, 1355–1362 (2001).

    CAS  PubMed  Google Scholar 

  82. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    ADS  CAS  PubMed  Google Scholar 

  83. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    ADS  CAS  PubMed  Google Scholar 

  84. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000).

    CAS  PubMed  Google Scholar 

  85. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gervais, F. et al. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging (in the press) published online 3 May 2006 (doi:10.1016/j.neurobiolaging.2006.02.015).

  87. McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology 47, 425–432 (1996).

    CAS  PubMed  Google Scholar 

  88. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    ADS  CAS  PubMed  Google Scholar 

  89. Morihara, T., Chu, T., Ubeda, O., Beech, W. & Cole, G. M. Selective inhibition of Aβ42 production by NSAID R-enantiomers. J. Neurochem. 83, 1009–1012 (2002).

    CAS  PubMed  Google Scholar 

  90. Eriksen, J. L. et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ 42 in vivo. J. Clin. Invest. 112, 440–449 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kopito, R. R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.T.L. thanks the National Institutes of Health for supporting his work in this area. H.A.L. thanks R. Luthi-Carter, P. Fraering and N. Zawia for reviewing the manuscript, and the Swiss National Science Foundation for supporting research in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Lansbury.

Ethics declarations

Competing interests

P.L. is currently chief scientific officer of Link Medicine, and is also an equity holder. Link Medicine is developing therapeutic strategies for several neurodegenerative diseases that are aimed at the reduction of protein aggregation.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansbury, P., Lashuel, H. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006). https://doi.org/10.1038/nature05290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05290

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing