Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation


Both prokaryotic and eukaryotic organisms contain DNA bridging proteins, which can have regulatory or architectural functions1. The molecular and mechanical details of such proteins are hard to obtain, in particular if they involve non-specific interactions. The bacterial nucleoid consists of hundreds of DNA loops, shaped in part by non-specific DNA bridging proteins such as histone-like nucleoid structuring protein (H-NS), leucine-responsive regulatory protein (Lrp) and SMC (structural maintenance of chromosomes) proteins2,3. We have developed an optical tweezers instrument that can independently handle two DNA molecules, which allows the systematic investigation of protein-mediated DNA–DNA interactions. Here we use this technique to investigate the abundant non-specific nucleoid-associated protein H-NS, and show that H-NS is dynamically organized between two DNA molecules in register with their helical pitch. Our optical tweezers also allow us to carry out dynamic force spectroscopy on non-specific DNA binding proteins and thereby to determine an energy landscape for the H-NS–DNA interaction. Our results explain how the bacterial nucleoid can be effectively compacted and organized, but be dynamic in nature and accessible to DNA-tracking motor enzymes. Finally, our experimental approach is widely applicable to other DNA bridging proteins, as well as to complex DNA interactions involving multiple DNA molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dual DNA manipulation.
Figure 2: Characteristics of H-NS bridges.
Figure 3: Structural models of H-NS and H-NS–DNA 2 complexes.
Figure 4: Kinetics of the H-NS–DNA interaction.


  1. Schleif, R. DNA looping. Annu. Rev. Biochem. 61, 199–223 (1992)

    CAS  Article  PubMed  Google Scholar 

  2. Dame, R. T. The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol. Microbiol. 56, 858–870 (2005)

    CAS  Article  PubMed  Google Scholar 

  3. Johnson, R. C., Johnson, L. M., Schmidt, J. W. & Gardner, J. F. Major Nucleoid Proteins in the Structure and Function of the Escherichia coli Chromosome (ed. Higgins, N. P.) (ASM, Washington DC, 2005)

    Book  Google Scholar 

  4. Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nature Rev. Microbiol. 2, 391–400 (2004)

    CAS  Article  Google Scholar 

  5. Rimsky, S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 7, 109–114 (2004)

    CAS  Article  PubMed  Google Scholar 

  6. Dame, R. T. et al. DNA bridging: a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845–1848 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Dame, R. T., Wyman, C. & Goosen, N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res. 28, 3504–3510 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Esposito, D. et al. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J. Mol. Biol. 324, 841–850 (2002)

    CAS  Article  PubMed  Google Scholar 

  9. Bustamante, C., Macosko, J. C. & Wuite, G. J. L. Grabbing the cat by the tail: manipulating molecules one by one. Nature Rev. Mol. Cell Biol. 1, 130–136 (2000)

    CAS  Article  Google Scholar 

  10. Amit, R., Oppenheim, A. B. & Stavans, J. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 84, 2467–2473 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dame, R. T. & Wuite, G. J. L. On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back. Biophys. J. 85, 4146–4148 (2003)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Shindo, H. et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett. 360, 125–131 (1995)

    CAS  Article  PubMed  Google Scholar 

  14. Bloch, V. et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nature Struct. Biol. 10, 212–218 (2003)

    CAS  Article  PubMed  Google Scholar 

  15. Ceschini, S. et al. Multimeric self-assembly equilibria involving the histone-like protein H-NS. A thermodynamic study. J. Biol. Chem. 275, 729–734 (2000)

    CAS  Article  PubMed  Google Scholar 

  16. Smyth, C. P. et al. Oligomerization of the chromatin-structuring protein H-NS. Mol. Microbiol. 36, 962–972 (2000)

    CAS  Article  PubMed  Google Scholar 

  17. Evans, E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)

    CAS  Article  PubMed  Google Scholar 

  18. Camacho, C. J. & Vajda, S. Protein docking along smooth association pathways. Proc. Natl Acad. Sci. USA 98, 10636–10641 (2001)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Eckel, R. et al. Single-molecule experiments in synthetic biology: an approach to the affinity ranking of DNA-binding peptides. Angew. Chem. Int. Edn Engl. 44, 3921–3924 (2005)

    CAS  Article  Google Scholar 

  20. Jen-Jacobson, L. Protein–DNA recognition complexes: conservation of structure and binding energy in the transition state. Biopolymers 44, 153–180 (1997)

    CAS  Article  PubMed  Google Scholar 

  21. Ono, S. et al. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 15, 203–213 (2005)

    Article  Google Scholar 

  22. Deng, S., Stein, R. A. & Higgins, N. P. Organization of supercoil domains and their reorganization by transcription. Mol. Microbiol. 57, 1511–1521 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Hardy, C. D. & Cozzarelli, N. R. A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol. 57, 1636–1652 (2005)

    CAS  Article  PubMed  Google Scholar 

  24. Dame, R. T., Wyman, C., Wurm, R., Wagner, R. & Goosen, N. Structural basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J. Biol. Chem. 277, 2146–2150 (2002)

    CAS  Article  PubMed  Google Scholar 

  25. Schroder, O. & Wagner, R. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 298, 737–748 (2000)

    CAS  Article  PubMed  Google Scholar 

  26. Shin, M. et al. DNA looping-mediated repression by histone-like protein H-NS: specific requirement of E.σ70 as a cofactor for looping. Genes Dev. 19, 2388–2398 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Dole, S., Nagarajavel, V. & Schnetz, K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol. Microbiol. 52, 589–600 (2004)

    CAS  Article  PubMed  Google Scholar 

  28. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. L. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective. J. Struct. Biol. 165, 262–272 (2006)

    Article  Google Scholar 

  30. van den Broek, B., Noom, M. C. & Wuite, G. J. L. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway. Nucleic Acids Res. 33, 2676–2684 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This research was supported by the Netherlands Organization for Scientific Research (NWO) through an NWO-Vernieuwingsimpuls grant (to G.J.L.W.), a FOM-projectruimte grant (to G.J.L.W.), an NWO-VENI grant (to R.T.D.) and a grant from ALW-NWO (to G.J.L.W.). We thank B. van den Broek, N. Goosen, J. van Mameren, E. Peterman, R. Wagner and C. Woldringh for their input and critical reading of the manuscript and J. Kerssemakers for providing the step-fitting algorithm and his assistance using it.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Remus T. Dame or Gijs J. L. Wuite.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

The supplementary methods contains additional methods used in this work (PDF 14 kb)

Supplementary Figures

This file contains Supplementary Figures 1–4 referred to in the main text (S1, S2, S3 and S4) and Supplementary Notes. (PDF 1019 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dame, R., Noom, M. & Wuite, G. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing