Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein delivery into eukaryotic cells by type III secretion machines

Abstract

Bacteria that have sustained long-standing close associations with eukaryotic hosts have evolved specific adaptations to survive and replicate in this environment. Perhaps one of the most remarkable of those adaptations is the type III secretion system (T3SS)—a bacterial organelle that has specifically evolved to deliver bacterial proteins into eukaryotic cells. Although originally identified in a handful of pathogenic bacteria, T3SSs are encoded by a large number of bacterial species that are symbiotic or pathogenic for humans, other animals including insects or nematodes, and plants. The study of these systems is leading to unique insights into not only organelle assembly and protein secretion but also mechanisms of symbiosis and pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Needle complex of Salmonella typhimurium.
Figure 2: Model of the assembly pathway of the needle complex.
Figure 3: Model for substrate recognition and delivery of proteins by type III secretion machines.
Figure 4: Crystal structures of type III secretion chaperones.

Similar content being viewed by others

References

  1. Pallen, M., Beatson, S. & Bailey, C. Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev. 29, 201–229 (2005)

    CAS  PubMed  Google Scholar 

  2. Saier, M. J. Evolution of bacterial type III protein secretion systems. Trends Microbiol. 12, 113–115 (2004)

    CAS  PubMed  Google Scholar 

  3. Macnab, R. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207–217 (2004)

    CAS  PubMed  Google Scholar 

  4. Cornelis, G. The Yersinia Ysc–Yop 'type III' weaponry. Nature Rev. Mol. Cell Biol. 3, 742–752 (2002)

    CAS  Google Scholar 

  5. Alfano, J. & Collmer, A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414 (2004)

    CAS  PubMed  Google Scholar 

  6. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998)

    ADS  CAS  PubMed  Google Scholar 

  7. Blocker, A. et al. Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001)

    CAS  PubMed  Google Scholar 

  8. Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl Acad. Sci. USA 98, 11638–11643 (2001)

    ADS  CAS  PubMed  Google Scholar 

  9. Daniell, S. et al. The filamentous type III secretion translocon of enteropathogenic Escherichia coli.. Cell. Microbiol. 3, 865–871 (2001)

    CAS  PubMed  Google Scholar 

  10. Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sukhan, A., Kubori, T., Wilson, J. & Galán, J. E. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J. Bacteriol. 183, 1159–1167 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kubori, T., Sukhan, A., Aizawa, S. I. & Galán, J. E. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl Acad. Sci. USA 97, 10225–10230 (2000)

    ADS  CAS  PubMed  Google Scholar 

  13. Kimbrough, T. & Miller, S. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000)

    ADS  CAS  PubMed  Google Scholar 

  14. Crago, A. & Koronakis, V. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30, 47–56 (1998)

    CAS  PubMed  Google Scholar 

  15. Daefler, S. & Russel, M. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol. 28, 1367–1380 (1998)

    CAS  PubMed  Google Scholar 

  16. Crepin, V. et al. Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ. Mol. Microbiol. 55, 1658–1670 (2005)

    CAS  PubMed  Google Scholar 

  17. Yip, C. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005)

    ADS  CAS  PubMed  Google Scholar 

  18. Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003)

    ADS  CAS  PubMed  Google Scholar 

  19. Morita-Ishihara, T. et al. Shigella Spa33 is an essential C-ring component of type III secretion machinery. J. Biol. Chem. 281, 599–560 (2006)

    CAS  PubMed  Google Scholar 

  20. Li, J. et al. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica.. Proc. Natl Acad. Sci. USA 92, 7252–7256 (1995)

    ADS  CAS  PubMed  Google Scholar 

  21. Collazo, C. & Galán, J. E. Requirement of exported proteins for secretion through the invasion-associated Type III system in Salmonella typhimurium.. Infect. Immun. 64, 3524–3531 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760 (2003)

    ADS  CAS  PubMed  Google Scholar 

  23. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176, 5439–5449 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Makishima, S., Komoriya, K., Yamaguchi, S. & Aizawa, S. Length of the flagellar hook and the capacity of the type III export apparatus. Science 291, 2411–2413 (2001)

    ADS  CAS  PubMed  Google Scholar 

  25. Crepin, V., Shaw, R., Abe, C., Knutton, S. & Frankel, G. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J. Bacteriol. 187, 2881–2889 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Marlovits, T. C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006)

    ADS  CAS  PubMed  Google Scholar 

  27. Edqvist, P. et al. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol. 185, 2259–2266 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. West, N. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317 (2005)

    ADS  CAS  PubMed  Google Scholar 

  29. Mota, L. J., Journet, L., Sorg, I., Agrain, C. & Cornelis, G. R. Bacterial injectisomes: needle length does matter. Science 307, 1278 (2005)

    PubMed  Google Scholar 

  30. Pettersson, J. et al. Modulation of virulence factor expression by pathogen target cell contact. Science 273, 1231–1233 (1996)

    ADS  CAS  PubMed  Google Scholar 

  31. Wulff-Strobel, C., Williams, A. & Straley, S. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 43, 411–423 (2002)

    CAS  PubMed  Google Scholar 

  32. Sorg, J., Miller, N. & Schneewind, O. Substrate recognition of type III secretion machines–testing the RNA signal hypothesis. Cell. Microbiol. 7, 1217–1225 (2005)

    CAS  PubMed  Google Scholar 

  33. Sory, M.-P., Boland, A., Lambermount, I. & Cornelis, G. Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Natl Acad. Sci. USA 92, 11998–12002 (1995)

    ADS  CAS  PubMed  Google Scholar 

  34. Schesser, K., Frithz-Lindsten, E. & Wolf-Watz, H. Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J. Bacteriol. 178, 7227–7233 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson, D. M. & Schneewind, O. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica.. Science 278, 1140–1143 (1997)

    ADS  CAS  PubMed  Google Scholar 

  36. Lloyd, S., Sjöström, M., Andersson, S. & Wolf-Watz, H. Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol. Microbiol. 43, 51–59 (2002)

    CAS  PubMed  Google Scholar 

  37. Russmann, H., Kubori, T., Sauer, J. & Galán, J. Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Mol. Microbiol. 46, 769–779 (2002)

    CAS  PubMed  Google Scholar 

  38. Lee, S. H. & Galán, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495 (2004)

    CAS  PubMed  Google Scholar 

  39. Wattiau, P. & Cornelis, G. R. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol. 8, 123–131 (1993)

    CAS  PubMed  Google Scholar 

  40. Feldman, M. & Cornelis, G. The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol. Lett. 219, 151–158 (2003)

    CAS  PubMed  Google Scholar 

  41. Stebbins, C. E. & Galán, J. E. Priming virulence factors for delivery into the host. Nature Rev. Mol. Biol. 4, 738–743 (2003)

    CAS  Google Scholar 

  42. Woestyn, S., Sory, M. P., Boland, A., Lequenne, O. & Cornelis, G. R. The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol. Microbiol. 20, 1261–1271 (1996)

    CAS  PubMed  Google Scholar 

  43. Stebbins, C. E. & Galán, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001)

    ADS  CAS  PubMed  Google Scholar 

  44. Birtalan, S. C., Phillips, R. M. & Ghosh, P. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell 9, 971–980 (2002)

    CAS  PubMed  Google Scholar 

  45. Lilic, M., Vujanac, M. & Stebbins, C. A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol. Cell 21, 653–664 (2006)

    CAS  PubMed  Google Scholar 

  46. Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Struct. Biol. 8, 1031–1036 (2001)

    ADS  CAS  PubMed  Google Scholar 

  47. Gauthier, A. & Finlay, B. B. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli.. J. Bacteriol. 185, 6747–6755 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Akeda, Y. & Galán, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005)

    ADS  CAS  PubMed  Google Scholar 

  49. Muller, S. et al. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol. Microbiol. 61, 119–125 (2006)

    CAS  PubMed  Google Scholar 

  50. Sauer, R. et al. Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 119, 9–18 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoiczyk, E. & Blobel, G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl Acad. Sci. USA 98, 4669–4674 (2001)

    ADS  CAS  PubMed  Google Scholar 

  52. Sory, M.-P. & Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594 (1994)

    CAS  PubMed  Google Scholar 

  53. Hakansson, S. et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15, 5812–5823 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tardy, F. et al. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J. 18, 6793–6799 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mueller, C. et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310, 674–676 (2005)

    ADS  CAS  PubMed  Google Scholar 

  56. Knutton, S. et al. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Roine, E. et al. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl Acad. Sci. USA 94, 3459–3464 (1997)

    ADS  CAS  PubMed  Google Scholar 

  58. Francis, M., Wolf-Watz, H. & Forsberg, A. Regulation of type III secretion systems. Curr. Opin. Microbiol. 5, 166–172 (2002)

    CAS  PubMed  Google Scholar 

  59. Ménard, R., Sansonetti, P. J. & Parsot, C. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 13, 5293–5302 (1994)

    PubMed  PubMed Central  Google Scholar 

  60. Torruellas, J., Jackson, M., Pennock, J. & Plano, G. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol. Microbiol. 57, 1719–1733 (2005)

    CAS  PubMed  Google Scholar 

  61. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005)

    CAS  PubMed  Google Scholar 

  62. Cordes, F. et al. Helical packing of needles from functionally altered Shigella type III secretion systems. J. Mol. Biol. 354, 206–211 (2005)

    CAS  PubMed  Google Scholar 

  63. Iriarte, M. et al. TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO J. 17, 1907–1918 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Day, J. & Plano, G. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 30, 777–788 (1998)

    CAS  PubMed  Google Scholar 

  65. Schubot, F. et al. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol. 346, 1147–1161 (2005)

    CAS  PubMed  Google Scholar 

  66. Kubori, T. & Galán, J. E. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol. 184, 4699–4708 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. O'Connell, C. et al. SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD. Mol. Microbiol. 52, 1613–1625 (2004)

    CAS  PubMed  Google Scholar 

  68. Demers, B., Sansonetti, P. J. & Parsot, C. Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. EMBO J. 17, 2894–2903 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Parsot, C. et al. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol. 56, 1627–1635 (2005)

    CAS  PubMed  Google Scholar 

  70. Rietsch, A., Vallet-Gely, I., Dove, S. & Mekalanos, J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005)

    ADS  CAS  PubMed  Google Scholar 

  71. Urbanowski, M., Lykken, G. & Yahr, T. A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc. Natl Acad. Sci. USA 102, 9930–9935 (2005)

    ADS  CAS  PubMed  Google Scholar 

  72. Hughes, K. T., Gillen, K. L., Semon, M. J. & Karlinsey, J. E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280 (1993)

    ADS  CAS  PubMed  Google Scholar 

  73. Stebbins, C. E. & Galán, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001)

    ADS  CAS  PubMed  Google Scholar 

  74. Hardt, W.-D., Chen, L.-M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998)

    CAS  PubMed  Google Scholar 

  75. Buchwald, G. et al. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21, 3286–3295 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu, Y. & Galán, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999)

    ADS  CAS  PubMed  Google Scholar 

  77. Von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000)

    CAS  PubMed  Google Scholar 

  78. Goehring, U., Schmidt, G., Pederson, K., Aktories, K. & Barbieri, J. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999)

    CAS  PubMed  Google Scholar 

  79. Stebbins, C. E. & Galán, J. E. Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000)

    CAS  PubMed  Google Scholar 

  80. Wurtele, M. et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac. Nature Struct. Biol. 8, 23–26 (2001)

    CAS  PubMed  Google Scholar 

  81. Kubori, T. & Galán, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003)

    CAS  PubMed  Google Scholar 

  82. Kim, M. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis.. Cell 121, 749–759 (2005)

    CAS  PubMed  Google Scholar 

  83. Nordfelth, R., Kauppi, A., Norberg, H., Wolf-Watz, H. & Elofsson, M. Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun. 73, 3104–3114 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Russmann, H. et al. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281, 565–568 (1998)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Marlovits and E. Stebbins for generously providing the images presented in Fig. 1 and 4, and members of the Galán laboratory for critical review of the manuscript. Work in the laboratory of J. G. is supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Galán.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galán, J., Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006). https://doi.org/10.1038/nature05272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05272

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing