Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein

Abstract

Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system1. EPSs have critical roles in bacterial colonization of surfaces2, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right3. Here we describe the 2.26 Å resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel α-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Group 1 capsular polysaccharide export in Gram-negative bacteria.
Figure 2: The structure of Wza.
Figure 3: The surfaces of Wza.

Similar content being viewed by others

References

  1. Roberts, I. S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50, 285–315 (1996)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  2. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004)

    Article  CAS  Google Scholar 

  3. Sutherland, I. W. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16, 41–46 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli.. Annu. Rev. Biochem. 75, 39–68 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Drummelsmith, J. & Whitfield, C. Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol. Microbiol. 31, 1321–1332 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Drummelsmith, J. & Whitfield, C. Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane. EMBO J. 19, 57–66 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nesper, J. et al. Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J. Biol. Chem. 278, 49763–49772 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Beis, K. et al. Three-dimensional structure of Wza, the protein required for translocation of group 1 capsular polysaccharide across the outer membrane of Escherichia coli.. J. Biol. Chem. 279, 28227–28232 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Reid, A. N. & Whitfield, C. Functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J. Bacteriol. 187, 5470–5481 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Collins, R. F. et al. Periplasmic protein–protein contacts in the inner membrane protein Wzc form a tetrameric complex required for the assembly of Escherichia coli group 1 capsules. J. Biol. Chem. 281, 2144–2150 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Wugeditsch, T. et al. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli.. J. Biol. Chem. 276, 2361–2371 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Paiment, A., Hocking, J. & Whitfield, C. Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli.. J. Bacteriol. 184, 6437–6447 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, Z. H., Horwich, A. L. & Sigler, P. B. The crystal structure of the asymmetric GroEL–GroES–(ADP)(7) chaperonin complex. Nature 388, 741–750 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tokuda, H. & Matsuyama, S. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta. 1693, 5–13 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz, N., Kahne, D. & Silhavy, T. J. Advances in understanding bacterial outer-membrane biogenesis. Nature Rev. Microbiol. 4, 57–66 (2006)

    Article  Google Scholar 

  17. Bulet, P., Stocklin, R. & Menin, L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169–184 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K. & Welte, W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282, 2215–2220 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Linderoth, N. A., Simon, M. N. & Russel, M. The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278, 1635–1638 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nouwen, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl Acad. Sci. USA 96, 8173–8177 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collins, R. F. et al. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 Å resolution. J. Biol. Chem. 279, 39750–39756 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Y. F., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305, 1587–1594 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli.. Science 301, 610–615 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Reyes, C. L. & Chang, G. Structure of the ABC transporter MsbA in complex with ADP-vanadate and lipopolysaccharide. Science 308, 1028–1031 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Moothoo, D. N. & Naismith, J. H. Concanavalin A distorts the β-GlcNAc-(1→2)-Man linkage of β-GlcNAc-(1→2)-α-Man-(1→3)-[β-GLcNAc-(1→2)-α-Man-(1→6)]-Man upon binding. Glycobiology 8, 173–181 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Rahn, A., Drummelsmith, J. & Whitfield, C. Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: Relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae.. J. Bacteriol. 181, 2307–2313 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Beis, K., Nesper, J., Whitfield, C. & Naismith, J. H. Crystallization and preliminary X-ray diffraction analysis of Wza outer-membrane lipoprotein from Escherichia coli serotype O9a:K30. Acta Crystallogr. D. 60, 558–560 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.H.N. is a Biotechnology and Biology Sciences Research Council (BBSRC) Career Development Fellow, and acknowledges funding from a Wellcome Trust programme grant for biological aspects of the research. C.W. holds a Canada Research Chair and acknowledges funding from the Canadian Institutes of Health Research. The experimental structural biology was performed by the Scottish Structural Proteomics Facility, which is funded by the Scottish Higher Education Funding Council and the BBSRC. We acknowledge the use of ESRF beamlines and are grateful for assistance from D. Bourgeois and G. Leonard with data collection. We thank L. Cuthbertson for assistance with bioinformatic analyses, R. Clarke for fluorescence-activated cell sorting, and G. Taylor, M. White and B. Hunter for a critical review of the manuscript.

Author Contributions C.D. optimized crystals, collected data, and solved, refined and analysed the Wza structure. K.B. and J.N. grew the first crystals. K.B. devised and refined the SeMet protocol. A.L.B.-L. and B.R.C. made and analysed the site-directed mutants and Wza–Flag fusion, respectively. C.W. oversaw the project, analysed the data and wrote the paper. J.H.N. oversaw the project, collected X-ray data, solved and refined the structure, analysed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Naismith.

Ethics declarations

Competing interests

Coordinates and data are available from the Worldwide Protein Data Bank, accession code 2j58. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures 1–7 and additional references. The Supplementary Methods detail the molecular biology and crystallography. The Supplementary Figures give different views of the structure including experimental density in wall eye stereo. Extra experimental data is also shown in the Supplementary Figures. (PDF 4670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Beis, K., Nesper, J. et al. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444, 226–229 (2006). https://doi.org/10.1038/nature05267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing