Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two modes of fusion pore opening revealed by cell-attached recordings at a synapse

Abstract

Fusion of a vesicle with the cell membrane opens a pore that releases transmitter to the extracellular space1,2,3. The pore can either dilate fully so that the vesicle collapses completely, or close rapidly to generate ‘kiss-and-run’ fusion1,2,4,5,6,7. The size of the pore determines the release rate2. At synapses, the size of the fusion pore is unclear, ‘kiss-and-run’ remains controversial8,9,10,11,12,13,14,15, and the ability of ‘kiss-and-run’ fusion to generate rapid synaptic currents16,17 is questionable18. Here, by recording fusion pore kinetics during single vesicle fusion, we found both full collapse and ‘kiss-and-run’ fusion at calyx-type synapses. For full collapse, the initial fusion pore conductance (Gp) was usually >375 pS and increased rapidly at ≥299 pS ms–1. ‘Kiss-and-run’ fusion was seen as a brief capacitance flicker (<2 s) with Gp >288 pS for most flickers, but within 15–288 pS for the remaining flickers. Large Gp (>288 pS) might discharge transmitter rapidly and thereby cause rapid synaptic currents, whereas small Gp might generate slow and small synaptic currents. These results show that ‘kiss-and-run’ fusion occurs at synapses and that it can generate rapid postsynaptic currents, and suggest that various fusion pore sizes help to control the kinetics and amplitude of synaptic currents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capacitance up-steps at the nerve terminal.
Figure 2: Capacitance up-steps reflect single vesicle fusion.
Figure 3: Modes of fusion pore openings.

Similar content being viewed by others

References

  1. Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814–817 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Lindau, M. & Alvarez de Toledo, G. The fusion pore. Biochim. Biophys. Acta 164, 167–173 (2003)

    Article  Google Scholar 

  3. Alvarez, D. T., Fernandez-Chacon, R. & Fernandez, J. M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993)

    Article  ADS  Google Scholar 

  4. Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973)

    Article  CAS  Google Scholar 

  5. Ceccarelli, B., Hurlbut, W. P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973)

    Article  CAS  Google Scholar 

  6. Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. Neurotransmitter release, fusion or ‘kiss and run’?. Trends Cell Biol. 4, 1–4 (1994)

    Article  CAS  Google Scholar 

  7. Fernandez, J. M., Neher, E. & Gomperts, B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312, 453–455 (1984)

    Article  ADS  CAS  Google Scholar 

  8. Aravanis, A. M., Pyle, J. L. & Tsien, R. W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Fernandez-Alfonso, T. & Ryan, T. A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943–953 (2004)

    Article  CAS  Google Scholar 

  11. Sun, J. Y., Wu, X. S. & Wu, L. G. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Harata, N. C., Choi, S., Pyle, J. L., Aravanis, A. M. & Tsien, R. W. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49, 243–256 (2006)

    Article  CAS  Google Scholar 

  14. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nature Neurosci. 9, 1019–1027 (2006)

    Article  CAS  Google Scholar 

  15. Fernandez-Alfonso, T., Kwan, R. & Ryan, T. A. Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186 (2006)

    Article  CAS  Google Scholar 

  16. Stiles, J. R., Van Helden, D., Bartol, T. M., Salpeter, E. E. & Salpeter, M. M. Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc. Natl Acad. Sci. USA 93, 5747–5752 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Bruns, D. & Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62–65 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Klyachko, V. A. & Jackson, M. B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Lenn, N. J. & Reese, T. S. The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat. 118, 375–390 (1966)

    Article  CAS  Google Scholar 

  20. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002)

    Article  Google Scholar 

  21. Gentet, L. J., Stuart, G. J. & Clements, J. D. Direct measurement of specific membrane capacitance in neurons. Biophys. J. 79, 314–320 (2000)

    Article  CAS  Google Scholar 

  22. Singer, J. H., Lassova, L., Vardi, N. & Diamond, J. S. Coordinated multivesicular release at a mammalian ribbon synapse. Nature Neurosci. 7, 826–833 (2004)

    Article  CAS  Google Scholar 

  23. Debus, K. & Lindau, M. Resolution of patch capacitance recordings and of fusion pore conductances in small vesicles. Biophys. J. 78, 2983–2997 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Stiles, J. R., Bartol, T. B., Salpeter, M. M., Salpeter, E. E. & Sejnowski, T. J. in Synapses (eds Cowan, T. C., Sudhof, T. C. & Stevens, C. F.) 681–732 (Johns Hopkins Univ. Press, Baltimore, 2000)

  25. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001)

    Article  CAS  Google Scholar 

  26. Choi, S., Klingauf, J. & Tsien, R. W. Fusion pore modulation as a presynaptic mechanism contributing to expression of long-term potentiation. Phil. Trans. R. Soc. Lond. B 358, 695–705 (2003)

    Article  Google Scholar 

  27. Pawlu, C., DiAntonio, A. & Heckmann, M. Postfusional control of quantal current shape. Neuron 42, 607–618 (2004)

    Article  CAS  Google Scholar 

  28. Almers, W. et al. Millisecond studies of single membrane fusion events. Ann. NY Acad. Sci. 635, 318–327 (1991)

    Article  ADS  CAS  Google Scholar 

  29. Spruce, A. E., Breckenridge, L. J., Lee, A. K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643–654 (1990)

    Article  CAS  Google Scholar 

  30. Nielsen, T. A., Digregorio, D. A. & Silver, R. A. Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42, 757–771 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Klyachko and M. Lindau for technical guidance on cell-attached recordings. We thank M. Lindau for the software for data analysis. We thank J. Diamond, W. Wu, L. Xue, W. Grimes, M. Diaz-Bustamante and B. McNeil for help with simulation and data analysis. We thank J. Diamond, D. Nees, K. Paradiso and J. Xu for comments on the manuscript. This work was supported by the National Institute of Neurological Disorders and Stroke Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Gang Wu.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains 8 sections: I) The debate of 'kiss-and-run' at synapses, II) Capacitance up-step frequency depends on calcium, III) The capacitance up-step or flicker was not caused by the capacitance artifact observed at the whole-cell mode, IV) Switch from the cell-attached to the whole-cell mode, V) Capacitance flickers reflect single vesicle fusion and retrieval, VI) Non-flicker up-steps with a small initial fusion pore conductance, VII) Fusion pore size affects the rate of transmitter release and thus the time course and the amplitude of synaptic currents, and VIII) Methods. This file also contains Supplementary Figures 1–10 and Supplementary Table 1. (PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Wu, XS., Mohan, R. et al. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006). https://doi.org/10.1038/nature05250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05250

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing