Abstract
Micromechanical resonators, when cooled down to near their ground state, can be used to explore quantum effects such as superposition and entanglement at a macroscopic scale1,2,3. Previously, it has been proposed to use electronic feedback to cool a high frequency (10 MHz) resonator to near its ground state4. In other work, a low frequency resonator was cooled from room temperature to 18 K by passive optical feedback5. Additionally, active optical feedback of atomic force microscope cantilevers has been used to modify their response characteristics6, and cooling to approximately 2 K has been measured7. Here we demonstrate active optical feedback cooling to 135 ± 15 mK of a micromechanical resonator integrated with a high-quality optical resonator. Additionally, we show that the scheme should be applicable at cryogenic base temperatures, allowing cooling to near the ground state that is required for quantum experiments—near 100 nK for a kHz oscillator.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-precision multiparameter estimation of mechanical force by quantum optomechanics
Scientific Reports Open Access 26 September 2022
-
Negative radiation pressure in metamaterials explained by light-driven atomic mass density rarefication waves
Scientific Reports Open Access 26 April 2022
-
Ground-state cooling of mechanical resonators by quantum reservoir engineering
Communications Physics Open Access 12 May 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999)
Mancini, S., Vitali, D., Giovannetti, V. & Tombesi, P. Stationary entanglement between macroscopic mechanical oscillators. Eur. Phys. J. D 22, 417–422 (2003)
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)
Hopkins, A., Jacobs, K., Habib, S. & Schwab, K. Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235238 (2003)
Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)
Mertz, J., Marti, O. & Mlynek, K. Regulation of a microcantilever response by force feedback. Appl. Phys. Lett. 62, 2344–2346 (1993)
Bruland, K. J., Garbini, J. L., Dougherty, W. M. & Sidles, J. A. Optimal control of force microscope cantilevers. II. Magnetic coupling implementation. J. Appl. Phys. 80, 1959–1964 (1996)
Kleckner, D. et al. High finesse opto-mechanical cavity with a movable thirty-micron-size mirror. Phys. Rev. Lett. 96, 173901 (2006)
Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999)
Turner, L. D., Weber, W. P., Hawthorn, C. J. & Scholten, R. E. Frequency noise characterisation of narrow linewidth diode lasers. Opt. Commun. 201, 391–397 (2002)
Vitali, B. D., Mancini, S., Ribichini, L. & Tombesi, P. Mirror quiescence and high-sensitivity position measurements with feedback. Phys. Rev. A 65, 063803 (2002)
Joos, E. et al. Decoherence and the Appearance of a Classical World in Quantum Theory 2nd edn (Springer, New York, 2003)
Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)
Parpia, J. M. et al. Optimization procedure for the cooling of liquid 3He by adiabatic demagnetization of praseodymium nickel. Rev. Sci. Instrum. 56, 437–443 (1985)
Moussy, N., Courtois, A. & Pannetier, B. A very low temperature scanning tunnelling microscope for the local spectroscopy of mesoscopic structures. Rev. Sci. Instrum. 71, 128–131 (2001)
Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001)
Courty, J. M., Heidman, A. & Pinard, M. Quantum limits of cold damping with optomechanical coupling. Eur. Phys. J. D 17, 399–408 (2001)
Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000)
Acknowledgements
This work was supported by the National Science Foundation. We thank M. de Dood, H. Eisenberg, S. Hastings, W. Irvine, A. Kahl, G. Khoury, W. Marshall and C. Simon for their contributions at earlier stages of this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kleckner, D., Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006). https://doi.org/10.1038/nature05231
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature05231
This article is cited by
-
Negative radiation pressure in metamaterials explained by light-driven atomic mass density rarefication waves
Scientific Reports (2022)
-
High-precision multiparameter estimation of mechanical force by quantum optomechanics
Scientific Reports (2022)
-
Microwave Optomechanically Induced Transparency and Absorption Between 250 and 450 mK
Journal of Low Temperature Physics (2022)
-
Micro–micro and micro–macro entanglement witnessing via the geometric phase in an impurity-doped Bose–Einstein condensate
Quantum Information Processing (2022)
-
Optomechanical ratchet resonators
Science China Physics, Mechanics & Astronomy (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.