Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for superfluidity of ultracold fermions in an optical lattice

Abstract

The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. By using cold atomic gases, various models of condensed matter can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing1 at low temperatures, a possible mechanism for high temperature superconductivity in the copper oxides2. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in bulk atomic gases include the observation of fermion-pair condensates and high-temperature superfluidity3,4,5,6,7,8. Experiments with fermions9,10,11 and bosonic bound pairs12,13 in optical lattices have been reported but have not yet addressed superfluid behaviour. Here we report the observation of distinct interference peaks when a condensate of fermionic atom pairs is released from an optical lattice, implying long-range order (a property of a superfluid). Conceptually, this means that s-wave pairing and coherence of fermion pairs have now been established in a lattice potential, in which the transport of atoms occurs by quantum mechanical tunnelling and not by simple propagation. These observations were made for interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly as a result of a transition from superfluid to insulator. Such strongly interacting fermions in an optical lattice can be used to study a new class of hamiltonians with interband and atom–molecule couplings14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissipative collisions during expansion of a strongly interacting fermionic superfluid.
Figure 2: Observation of high-contrast interference of fermion pairs released from an optical lattice below and above the Feshbach resonance.
Figure 3: Interferograms of fermion pairs released from different lattice depths V 0 at a field of 822 G.
Figure 4: Peak optical density of interference peaks for increasing lattice depths at different magnetic fields.
Figure 5: Restoring coherence from a deep lattice.

Similar content being viewed by others

References

  1. Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Scalapino, D. J. The case for \(d_{x^2 - y^2 } \)pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995)

    Article  ADS  CAS  Google Scholar 

  3. Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose–Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Jochim, S. et al. Bose–Einstein condensation of molecules. Science 302, 2101–2103 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Zwierlein, M. W. et al. Observation of Bose–Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Modugno, G., Ferlaino, F., Heidemann, R., Roati, G. & Inguscio, M. Production of a Fermi gas of atoms in an optical lattice. Phys. Rev. A 68, 011601(R) (2003)

    Article  ADS  Google Scholar 

  10. Köhl, M., Moritz, H., Stöferle, T., Gunther, K. & Esslinger, T. Fermionic atoms in a three-dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005)

    Article  ADS  Google Scholar 

  11. Stöferle, T., Moritz, H., Gunther, K., Kohl, M. & Esslinger, T. Molecules of fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006)

    Article  ADS  Google Scholar 

  12. Volz, T. et al. A Mott state of molecules. Condensed Matt. (submitted); preprint at <http://arxiv.org/abs/cond-mat/0605184> (2006)

  13. Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Duan, L-M. Effective Hamiltonian for Fermions in an optical lattice across a Feshbach resonance. Phys. Rev. Lett. 95, 243202 (2005)

    Article  ADS  Google Scholar 

  15. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997)

    Article  CAS  Google Scholar 

  16. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476–479 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Schunck, C., Zwierlein, M. W., Schirotzek, A. & Ketterle, W. Superfluid expansion of a strongly interacting Fermi gas. Condensed Matt. (submitted); preprint at <http://arxiv.org/abs/cond-mat/0607298> (2006)

  21. Onofrio, R. et al. Observation of superfluid flow in a Bose–Einstein condensed gas. Phys. Rev. Lett. 85, 2228–2231 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Schori, C., Stöferle, T., Moritz, H., Köhl, M. & Esslinger, T. Excitations of a superfluid in a three-dimensional optical lattice. Phys. Rev. Lett. 93, 240402 (2004)

    Article  ADS  Google Scholar 

  23. Xu, K. et al. Sodium Bose–Einstein condensates in an optical lattice. Phys. Rev. A. 72, 043604 (2005)

    Article  ADS  Google Scholar 

  24. Moritz, H., Stöferle, T., Gunter, K., Köhl, M. & Esslinger, T. Confinement induced molecules in a 1d Fermi gas. Phys. Rev. Lett. 94, 210401 (2005)

    Article  ADS  Google Scholar 

  25. Koetsier, A. O., Dickerscheid, D. B. M. & Stoof, H. T. C. BEC–BCS crossover in an optical lattice. Condensed Matt. (submitted); preprint at <http://arxiv.org/abs/cond-mat/0604186> (2006)

  26. Gubbels, K. B., Dickerscheid, D. B. M. & Stoof, H. T. C. Dressed molecules in an optical lattice. Condensed Matt. (submitted); preprint at <http://arxiv.org/abs/cond-mat/0605056> (2006)

  27. Hadzibabic, Z. et al. Fifty-fold improvement in the number of quantum degenerate fermionic atoms. Phys. Rev. Lett. 91, 160401 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Stan, C. A. & Ketterle, W. Multiple species atom source for laser-cooling experiments. Rev. Sci. Instrum. 76, 063113 (2005)

    Article  ADS  Google Scholar 

  29. Bartenstein, M. et al. Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94, 103201 (2004)

    Article  ADS  Google Scholar 

  30. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: the near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827–830 (1986)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Demler, Z. Hadzibabic and M. Zwierlein for discussions. This work was supported by the NSF, the Office of Naval Research and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Chin.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, J., Miller, D., Liu, Y. et al. Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443, 961–964 (2006). https://doi.org/10.1038/nature05224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing