Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes

Abstract

Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by ‘snowball Earth’ episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth’s entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Evaporite palaeomagnetic latitudes through time, assuming a GAD field as a null hypothesis.
Figure 2: Two sporadically evaporitic pre-Ediacaran basins that are palaeomagnetically well constrained throughout their depositional histories.
Figure 3: Plot of magnetic inclination against same-sign geomagnetic octupole component relative to a purely GAD field.

References

  1. Evans, D. A. D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000)

    ADS  Article  Google Scholar 

  2. Evans, D. A. D. A fundamental Precambrian–Phanerozoic shift in Earth’s glacial style?. Tectonophysics 375, 353–385 (2003)

    ADS  Article  Google Scholar 

  3. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002)

    ADS  CAS  Article  Google Scholar 

  5. Kirschvink, J. L. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge Univ. Press, Cambridge, 1992)

  6. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice sheet model. Nature 405, 425–429 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Poulsen, C. J. Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology 31, 473–476 (2003)

    ADS  Article  Google Scholar 

  8. Williams, G. E. Late Precambrian glacial climate and the Earth’s obliquity. Geol. Mag. 112, 441–465 (1975)

    ADS  Article  Google Scholar 

  9. Williams, G. E. History of the Earth’s obliquity. Earth Sci. Rev. 34, 1–45 (1993)

    ADS  Article  Google Scholar 

  10. Vanyo, J. P. & Awramik, S. M. Stromatolites and Earth–Sun–Moon dynamics. Precambr. Res. 29, 121–142 (1985)

    ADS  Article  Google Scholar 

  11. Levrard, B. & Laskar, J. Climate friction and the Earth’s obliquity. Geophys. J. Int. 154, 970–990 (2003)

    ADS  Article  Google Scholar 

  12. Pais, M. A., Le Mouel, J. L., Lambeck, K. & Poirer, J. P. Late Precambrian paradoxical glaciation and obliquity of the Earth: A discussion of dynamical constraints. Earth Planet. Sci. Lett. 174, 155–171 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Williams, D. M., Kasting, J. F. & Frakes, L. A. Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455 (1998)

    ADS  CAS  Article  Google Scholar 

  14. Kent, D. V. & Smethurst, M. A. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett. 160, 391–402 (1998)

    ADS  CAS  Article  Google Scholar 

  15. Bloxham, J. Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions. Nature 405, 63–65 (2000)

    ADS  CAS  Article  Google Scholar 

  16. Olson, P. & Christensen, U. R. The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002)

    ADS  Article  Google Scholar 

  17. Irving, E. Palaeomagnetic and paleoclimatological aspects of polar wandering. Geofis. Pura Appl. 33, 23–41 (1956)

    ADS  Article  Google Scholar 

  18. Irving, E. & Briden, J. C. Palaeolatitude of evaporite deposits. Nature 196, 425–428 (1962)

    ADS  Article  Google Scholar 

  19. Opdyke, N. D. in Continental Drift (ed. Runcorn, S. K.) 41–65 (Academic, New York, 1962)

  20. Borchert, H. & Muir, R. O. Salt Deposits (Van Nostrand, London, 1964)

  21. Drewry, G. E., Ramsay, A. T. S. & Smith, A. G. Climatically controlled sediments, the geomagnetic field, and trade wind belts in Phanerozoic time. J. Geol. 82, 531–553 (1974)

    ADS  Article  Google Scholar 

  22. Gordon, W. A. Distribution by latitude of Phanerozoic evaporite deposits. J. Geol. 83, 671–684 (1975)

    ADS  Article  Google Scholar 

  23. Parrish, J. T., Ziegler, A. M. & Scotese, C. R. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 67–101 (1982)

    Article  Google Scholar 

  24. Besse, J. & Courtillot, V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. 107 doi: 10.1029/2000JB000050 (2002)

  25. Torsvik, T. H. & Van der Voo, R. Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int. 151, 771–794 (2002)

    ADS  Article  Google Scholar 

  26. Kent, D. V. & Tauxe, L. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic. Science 307, 240–244 (2005)

    ADS  CAS  Article  Google Scholar 

  27. Zharkov, M. A. History of Paleozoic Salt Accumulation (Springer, Berlin, 1981)

  28. Van der Voo, R. Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans (Cambridge Univ. Press, Cambridge, 1993)

  29. McElhinny, M. W., Powell, C. M. & Pisarevsky, S. A. Paleozoic terranes of eastern Australia and the drift history of Gondwana. Tectonophysics 362, 41–65 (2003)

    ADS  Article  Google Scholar 

  30. Van der Voo, R. & Torsvik, T. H. Evidence for late Paleozoic and Mesozoic non-dipole fields provides an explanation for the Pangea reconstruction problems. Earth Planet. Sci. Lett. 187, 71–81 (2001)

    ADS  CAS  Article  Google Scholar 

  31. Pope, M. C. & Grotzinger, J. P. Paleoproterozoic Stark Formation, Athapuscow basin, northwest Canada: Record of cratonic-scale salinity crisis. J. Sedim. Res. 73, 280–295 (2003)

    Article  Google Scholar 

  32. Warren, J. K. Evaporites: Their Evolution and Economics (Blackwell Science, Oxford, 1999)

  33. Hunt, B. G. The impact of large variations of the Earth’s obliquity on the climate. J. Meteorol. Soc. Jpn 60, 309–318 (1982)

    Article  Google Scholar 

  34. Jenkins, G. S. Global climate model high-obliquity solutions to the ancient climate puzzles of the Faint Young Sun Paradox and low-altitude Proterozoic Glaciation. J. Geophys. Res. 105, 7357–7370 (2000)

    ADS  Article  Google Scholar 

  35. Jenkins, G. S. High-obliquity simulations for the Archean Earth: Implications for climatic conditions on early Mars. J. Geophys. Res. 106, 32903–32913 (2001)

    ADS  CAS  Article  Google Scholar 

  36. Livermore, R. A., Vine, F. J. & Smith, A. G. Plate motions and the geomagnetic field. I. Quaternary and late Tertiary. Geophys. J. R. Astron. Soc. 73, 153–171 (1983)

    ADS  Article  Google Scholar 

  37. Evans, D. A. D. True polar wander and supercontinents. Tectonophysics 362, 303–320 (2003)

    ADS  Article  Google Scholar 

  38. Muttoni, G. et al. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth Planet. Sci. Lett. 215, 379–394 (2003)

    ADS  CAS  Article  Google Scholar 

  39. Torsvik, T. H. & Cocks, L. R. M. Earth geography from 400 to 250 Ma: a palaeomagnetic, faunal and facies review. J. Geol. Soc. Lond. 161, 555–572 (2004)

    Article  Google Scholar 

  40. Hunt, B. G. The effects of past variations of the Earth’s rotation rate on climate. Nature 281, 188–191 (1979)

    ADS  Article  Google Scholar 

  41. Tauxe, L. Inclination flattening and the geocentric axial dipole hypothesis. Earth Planet. Sci. Lett. 233, 247–261 (2005)

    ADS  CAS  Article  Google Scholar 

  42. Hallam, A. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 47, 195–223 (1984)

    Article  Google Scholar 

  43. Raub, T. D. & Evans, D. A. D. Magnetic reversals in basal Ediacaran cap carbonates: A critical review. Eos 87 (36)abstract GP41B–02 (2006)

  44. Smirnov, A. V., Tarduno, J. A. & Pisakin, B. N. Paleointensity of the early geodynamo (2.45 Ga) as recorded in Karelia: A single-crystal approach. Geology 31, 415–418 (2003)

    ADS  Article  Google Scholar 

  45. Park, J. K. & Jefferson, C. W. Magnetic and tectonic history of the Late Proterozoic Upper Little Dal and Coates Lake Groups of northwestern Canada. Precambr. Res. 52, 1–35 (1991)

    ADS  Article  Google Scholar 

  46. Idnurm, M. Towards a high resolution Late Palaeoproterozoic – earliest Mesoproterozoic apparent polar wander path for northern Australia. Aust. J. Earth Sci. 47, 405–429 (2000)

    ADS  CAS  Article  Google Scholar 

  47. Cocks, L. R. M. & Torsvik, T. H. Earth geography from 500 to 400 million years ago: a faunal and paleomagnetic review. J. Geol. Soc. Lond. 159, 631–644 (2002)

    Article  Google Scholar 

  48. Torsvik, T. H., Van der Voo, R., Meert, J. G., Mosar, J. & Walderhaug, H. J. Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth Planet. Sci. Lett. 187, 55–69 (2001)

    ADS  CAS  Article  Google Scholar 

  49. Yang, Z., Yin, J., Sun, Z., Otofuji, Y. & Sato, K. Discrepant Cretaceous paleomagnetic poles between Eastern China and Indochina: a consequence of the extrusion of Indochina. Tectonophysics 334, 101–113 (2001)

    ADS  Article  Google Scholar 

  50. Zhao, X., Coe, R. S., Gilder, S. A. & Frost, G. M. Palaeomagnetic constraints on the palaeogeography of China: implications for Gondwanaland. Aust. J. Earth Sci. 43, 643–672 (1996)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I thank J. Emerson, K. Grey, J. Grotzinger, P. Hoffman, D. Kent, R. Rainbird, Tim and Theresa Raub, S. Sherwood and P. Southgate for discussions, and R. Van der Voo for constructive comments on the manuscript. The David and Lucile Packard Foundation provided support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. D. Evans.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Supplementary information

Supplementary Information

This document contains individual descriptions of evaporite deposits, with references to information on stratigraphy, ages, and palaeomagnetic constraints. (DOC 202 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006). https://doi.org/10.1038/nature05203

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05203

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing