Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Symbiosis insights through metagenomic analysis of a microbial consortium

This article has been updated

Abstract

Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering of the O. algarvensis symbiont scaffolds.
Figure 2: Reconstruction of the symbionts’ physiology.
Figure 3: Reconstruction of symbiont–host interactions.
Figure 4: Model for energy metabolism in the symbiosis.

Similar content being viewed by others

Change history

  • 26 October 2006

    In the advance online publication version of this Article, author Marcel Huntemann’s surname was misspelled as ‘Hunteman’. This was corrected on 26 October 2006.

References

  1. Margulis, L. Symbiosis in Cell Evolution (W. H. Freeman, New York, 1993)

  2. Ruby, E. G., Henderson, B. & McFall-Ngai, M. We get by with a little help from our (little) friends. Science 303, 1305–1307 (2004)

    Article  CAS  Google Scholar 

  3. DeLong, E. F. Microbial population genomics and ecology. Curr. Opin. Microbiol. 5, 520–524 (2002)

    Article  Google Scholar 

  4. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004)

    Article  CAS  Google Scholar 

  5. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004)

    Article  CAS  Google Scholar 

  6. DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Wu, D. et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4, e188 (2006)

    Article  Google Scholar 

  12. Dubilier, N., Blazejak, A. & Ruhland, C. Symbioses between bacteria and gutless marine oligochaetes. Prog. Mol. Subcell. Biol. 41, 251–275 (2006)

    Article  CAS  Google Scholar 

  13. Blazejak, A., Erseus, C., Amann, R. & Dubilier, N. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl. Environ. Microbiol. 71, 1553–1561 (2005)

    Article  CAS  Google Scholar 

  14. Dubilier, N. et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411, 298–302 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes.. Science 297, 1301–1310 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Medini, D., Donati, C., Tettelin, H., Masignani, V. & Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005)

    Article  CAS  Google Scholar 

  17. Mowat, C. G. et al. Octaheme tetrathionate reductase is a respiratory enzyme with novel heme ligation. Nature Struct. Mol. Biol. 11, 1023–1024 (2004)

    Article  CAS  Google Scholar 

  18. van den Ende, F. P., Meier, J. & van Gemerden, H. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol. Ecol. 23, 65–80 (1997)

    Article  CAS  Google Scholar 

  19. Matias, P. M., Pereira, I. A., Soares, C. M. & Carrondo, M. A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog. Biophys. Mol. Biol. 89, 292–329 (2005)

    Article  CAS  Google Scholar 

  20. Kletzin, A. & Adams, M. W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima.. J. Bacteriol. 178, 248–257 (1996)

    Article  CAS  Google Scholar 

  21. Cavanaugh, C. M., McKiness, Z. P., Newton, I. L. G. & Stewart, F. J. Marine chemosynthetic symbioses. In The Prokaryotes: A Handbook on the Biology of Bacteria (eds Dworkin, M. et al.) (Springer, New York, 2006)

  22. Liu, J. Y., Miller, P. F., Gosink, M. & Olson, E. R. The identification of a new family of sugar efflux pumps in Escherichia coli.. Mol. Microbiol. 31, 1845–1851 (1999)

    Article  CAS  Google Scholar 

  23. Giere, O. & Erseus, C. Taxonomy and new bacterial symbioses of gutless marine Tubificidae (Annelida, Oligochaete) from the island of Elba (Italy). Org. Divers. Evol. 2, 289–297 (2002)

    Article  Google Scholar 

  24. De Cian, M., Regnault, M. & Lallier, F. H. Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila.. J. Exp. Biol. 203, 2907–2920 (2000)

    CAS  PubMed  Google Scholar 

  25. Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305, 1587–1594 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Yancey, P. H., Blake, W. R. & Conley, J. Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol. A 133, 667–676 (2002)

    Article  Google Scholar 

  27. Denger, K., Ruff, J., Schleheck, D. & Cook, A. M. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150, 1859–1867 (2004)

    Article  CAS  Google Scholar 

  28. Yang, C. C., Packman, L. C. & Scrutton, N. S. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur. J. Biochem. 232, 264–271 (1995)

    Article  CAS  Google Scholar 

  29. Paul, L. & Ferguson, D. J. Jr. Krzycki, J. A. The trimethylamine methyltransferase gene and multiple dimethylamine methyltransferase genes of Methanosarcina barkeri contain in-frame and read-through amber codons. J. Bacteriol. 182, 2520–2529 (2000)

    Article  CAS  Google Scholar 

  30. Cohen, S. S. A Guide to the Polyamines (Oxford Univ. Press, New York, 1998)

  31. Kelly, D. J. & Thomas, G. H. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol. Rev. 25, 405–424 (2001)

    Article  CAS  Google Scholar 

  32. Moran, N. A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002)

    Article  CAS  Google Scholar 

  33. Moran, N. A. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Opin. Microbiol. 6, 512–518 (2003)

    Article  CAS  Google Scholar 

  34. Moran, N. A. & Plague, G. R. Genomic changes following host restriction in bacteria. Curr. Opin. Genet. Dev. 14, 627–633 (2004)

    Article  CAS  Google Scholar 

  35. Huntemann, M. MetaClust—Entwicklung eines modularen Programms zum Clustern von Metagenomfragmenten anhand verschiedener intrinsischer DNA-Signaturen. Diploma thesis, Univ. Bremen. (2006)

  36. Meyer, F. et al. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 31, 2187–2195 (2003)

    Article  CAS  Google Scholar 

  37. Quast, C. MicHanThi—Design and Implementation of a System for the Prediction of Gene Functions in Genome Annotation Projects. Diploma thesis, Univ. Bremen. (2006)

  38. Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucleic Acids Res. 34, D344–D348 (2006)

    Article  CAS  Google Scholar 

  39. Teeling, H., Waldmann, J., Lombardot, T., Bauer, M. & Glockner, F. O. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. BMC Bioinformatics 5, 163 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and supported by the University of California Lawrence Livermore National Laboratory, Lawrence Berkeley National Laboratory, and Los Alamos National Laboratory, and the Max Planck Society. We thank members of the Rubin, J. Bristow and P. Hugenholtz laboratories, as well as members of the Joint Genome Institute, for their contributions. We thank V. Markowitz, E. Dalin, N. Putnam, R. Sorek, T. Glavina del Rio, A. Salamov, A. Kobayashi and K. Kellaris for their assistance. At the Max Planck Institute for Marine Microbiology we thank S. Wetzel for technical assistance. We are grateful to C. Lott and the staff of the HYDRA field station at Elba for their generous support and help in sampling the worms.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward M. Rubin or Nicole Dubilier.

Ethics declarations

Competing interests

The assembled sequences from the Olavius symbionts’ metagenome have been deposited into the NCBI database under the project accession number AASZ00000000. The annotated Olavius symbionts’ bins were incorporated into the metagenomics version of the US Department of Energy Joint Genome Institute Integrated Microbial Genomes/M (IMG/M; http://img.jgi.doe.gov/m). Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary Discussion and additional references. In the original Supplementary Information posted on 17 September 2006, an incorrect weblink was given. The web link for the Java TreeView was posted as http://genetics.stanford.edu/~alok/TreeView/. The correct link is http://jtreeview.sourceforge.net/ (page 6, 2nd paragraph in the section “Binning”) This note was updated on 26 October 2006. (PDF 655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woyke, T., Teeling, H., Ivanova, N. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006). https://doi.org/10.1038/nature05192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05192

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing