Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Half-metallic graphene nanoribbons

A Corrigendum to this article was published on 15 March 2007


Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals—for example, the Heusler compounds1—and were first observed in a manganese perovskite2. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials3,4. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices5. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids6,7 but may also open a new path to explore spintronics3 at the nanometre scale, based on graphene8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene nanoribbon in electric fields.
Figure 2: Electronic structures of graphene nanoribbons.
Figure 3: Origin of half-metallicity.
Figure 4: Dependence of half-metallicity on system size.

Similar content being viewed by others


  1. de Groot, R. A., Mueller, F. M., van Engen, P. G. & Buschow, K. H. J. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    Article  ADS  CAS  Google Scholar 

  2. Park, J-H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Fang, C. M., de Wijs, G. A. & de Groot, R. A. Spin-polarization in half-metals. J. Appl. Phys. 91, 8340–8344 (2002)

    Article  ADS  CAS  Google Scholar 

  5. McEuen, P. L., Fuhrer, M. S. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)

    Article  ADS  Google Scholar 

  6. Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  PubMed  Google Scholar 

  8. Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)

    Article  CAS  Google Scholar 

  9. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Tan, Y-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Miyamoto, Y., Nakada, K. & Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 59, 9858–9861 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Kobayashi, Y., Fukui, K-I., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005)

    Article  ADS  Google Scholar 

  17. Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006)

    Article  ADS  Google Scholar 

  18. Okada, S. & Oshiyama, A. Magnetic ordering in hexagonally bonded sheets with first-row elements. Phys. Rev. Lett. 87, 146803 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lee, H., Son, Y-W., Park, N., Han, S. & Yu, J. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 72, 174431 (2005)

    Article  ADS  Google Scholar 

  20. Son, Y-W., Ihm, J., Cohen, M. L., Louie, S. G. & Choi, H. J. Electrical switching in metallic carbon nanotubes. Phys. Rev. Lett. 95, 216602 (2005)

    Article  ADS  PubMed  Google Scholar 

  21. Soler, J. M. et al. The SIESTA method for ab intio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  ADS  CAS  Google Scholar 

  23. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  24. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  ADS  CAS  Google Scholar 

  25. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Dorantes-Dávila, J. & Pastor, G. M. Magnetic anisotropy of one-dimensional nanostructures of transition metals. Phys. Rev. Lett. 81, 208–211 (1998)

    Article  ADS  Google Scholar 

  27. Vindigni, A., Rettori, A., Pini, M. G., Carbone, C. & Gambardella, P. Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems. Appl. Phys. A 82, 385–394 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Delin, A., Tossati, E. & Weht, R. Magnetism in atomic-size palladium contacts and nanowires. Phys. Rev. Lett. 92, 057201 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Yao, Y., Ye, F., Qi, X-L., Zhang, S-C. & Fang, Z. Spin-orbit gap of graphene. Preprint at <> (2006)

  30. Min, H. et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Preprint at <> (2006)

Download references


We thank J. Neaton, F. Giustino, I. Souza, C. H. Park and H. J. Choi for discussions. This research was supported by the National Science Foundation (NSF) and by the Director, Office of Science, Office of Basic Energy Science, Division of Material Sciences and Engineering, US Department of Energy (DOE). Computational resources have been provided by the NSF at the National Partnership for Advanced Computational Infrastructure and by the DOE at the National Energy Research Scientific Computing Center.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Steven G. Louie.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Robustness half-metallicity in defective graphene nanoribbons. (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, YW., Cohen, M. & Louie, S. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing