Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acceleration of Greenland ice mass loss in spring 2004


In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work2,3,4 has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 ± 36 km3 yr-1, equivalent to a global sea level rise of 0.5 ± 0.1 mm yr-1. The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Averaging functions.
Figure 2: Greenland GRACE monthly mass solutions.
Figure 3: North and south Greenland GRACE monthly mass solutions.
Figure 4: The best-fitting mass loss trends for each region, as determined for moving two-year data spans.


  1. Church, J. A. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 639–693 (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  2. Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Howat, I., Joughin, I., Tulaczyk, S. & Gogineni, S. Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett. 32, L22502, doi:10.1029/2005GL024737 (2005)

    Article  ADS  Google Scholar 

  4. Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett. 33, L03503, doi:10.1029/2005GL025428 (2006)

    Article  ADS  Google Scholar 

  5. Box, J. et al. Greenland ice sheet surface mass balance variability (1988–2004) from calibrated Polar MM5 output. J. Clim. 19, 2783–2800 (2006)

    Article  ADS  Google Scholar 

  6. Johannessen, O. et al. Recent ice-sheet growth in the interior of Greenland. Science 310, 5750, doi: 10.1126/science.111535 (2005)

    Article  Google Scholar 

  7. Zwally, J. et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005)

    Article  ADS  Google Scholar 

  8. Krabill, W. et al. Greenland ice sheet: High-elevation balance and peripheral thinning. Science 289, doi:10.1126/science.289.5478.428 (2000)

  9. Abdalati, W. et al. Outlet glacier and margin elevation changes: Near-coastal thinning of the Greenland ice sheet. J. Geophys. Res. 106, doi:10.1029/2001JD900192 (2001)

  10. Krabill, W. et al. Greenland Ice Sheet: Increased coastal thinning. Geophys. Res. Lett. 31, L24402, doi:10.1029/2004GL021533 (2004)

    Article  ADS  Google Scholar 

  11. Tapley, B., Bettadpur, S., Watkins, M. & Reigber, C. The Gravity Recovery and Climate Experiment; Mission overview and early results. Geophys. Res. Lett. 31, L09607, doi:10.1029/2004GL019920 (2004)

    Article  ADS  Google Scholar 

  12. Velicogna, I. & Wahr, J. Greenland mass balance from GRACE. Geophys. Res. Lett. 32, L18505, doi:10.1029/2005GL023955 (2005)

    ADS  Google Scholar 

  13. Cheng, M. & Tapley, B. Variations in the Earth's oblateness during the past 28 years. J. Geophys. Res. 109, B09402, doi:10.1029/2004JB003028 (2004)

    Article  ADS  Google Scholar 

  14. Swenson, S., Wahr, J. & Milly, P. C. D. Estimated accuracies of regional water storage anomalies inferred from GRACE. Wat. Resour. Res. 39, 1223, doi:10.1029/2002WR001808 (2003)

    Article  ADS  Google Scholar 

  15. Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004)

    Article  ADS  Google Scholar 

  16. Dobslaw, H. & Thomas, M. Atmospheric induced oceanic tides from ECMWF forecasts. Geophys. Res. Lett. 32, L10615, doi:10.1029/2005GL022990 (2005)

    Article  ADS  Google Scholar 

  17. Steffen, K. Greenland Climate Network (GC-Net) (2005).

  18. Wahr, J., Swenson, S. & Velicogna, I. The accuracy of GRACE mass estimates. Geophys. Res. Lett. 33, L06401, doi:10.1029/2004GL019779 (2006)

    Article  ADS  Google Scholar 

  19. Horwath, M. & Dietrich, R. Errors of regional mass variations inferred from GRACE monthly solutions. Geophys. Res. Lett. 33, L07502, doi:10.1029/2005GL025550 (2006)

    Article  ADS  Google Scholar 

  20. Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Fleming, I. & Lambeck, K. Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models. Quat. Sci. Rev. 23, 1053–1077 (2004)

    Article  ADS  Google Scholar 

  22. Tushingham, A. M. & Peltier, W. R. ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level change. J. Geophys. Res. 96, 4497–4523 (1991)

    Article  ADS  Google Scholar 

Download references


We thank S. Bettadpur, J. Cheng, J. Reis, E. Rignot and M. Watkins for data and advice. This work was supported by NASA's Cryospheric and Solid Earth Programs and by the NSF Office of Polar Programs. This research was carried out in part at the Jet Propulsion Laboratory.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Isabella Velicogna.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Velicogna, I., Wahr, J. Acceleration of Greenland ice mass loss in spring 2004. Nature 443, 329–331 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing