Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of strong coupling between one atom and a monolithic microresonator


Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics1,2,3,4 with diverse physical systems5, including single atoms in Fabry–Perot resonators1,6, quantum dots coupled to micropillars and photonic bandgap cavities7,8 and Cooper pairs interacting with superconducting resonators9,10. Experiments with single, localized atoms have been at the forefront of these advances11,12,13,14,15 with the use of optical resonators in high-finesse Fabry–Perot configurations16. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings17 of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems5. Here we show strong coupling between individual caesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonator's evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks18,19, scalable quantum logic with photons20, and quantum information processing on atom chips21.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple diagram of the experiment.
Figure 2: Cavity transmission function TF = PF/Pin as a function of probe frequency ωp.
Figure 3: Measurements of the forward signal P F in the presence of falling atoms (blue) and without atoms (green).
Figure 4: Measurements of transit events as a function of the atom–cavity detuning ΔAC.


  1. Miller, R. et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 38, S551–S565 (2005)

    Article  CAS  Google Scholar 

  2. Berman, P. (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994)

  3. Walther, H. Quantum optics of single atoms. Fortschr. Phys. 52, 1154–1164 (2004)

    Article  CAS  Google Scholar 

  4. Raimond, J. M. et al. Probing a quantum field in a photon box. J. Phys. B At. Mol. Opt. Phys. 38, S535–S550 (2005)

    Article  CAS  Google Scholar 

  5. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Nussmann, S. et al. Vacuum-stimulated cooling of single atoms in three dimensions. Nature Phys. 1, 122–125 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity nodes. Science 308, 1158–1161 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)

    Article  ADS  CAS  Google Scholar 

  11. McKeever, J., Boca, A., Boozer, A. D., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003)

    Article  ADS  CAS  Google Scholar 

  12. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004)

    Article  ADS  Google Scholar 

  16. Rempe, G., Thompson, R. J., Kimble, H. J. & Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 17, 363–365 (1992)

    Article  ADS  CAS  Google Scholar 

  17. Hood, C. J., Ye, J. & Kimble, H. J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A 64, 033804 (2001)

    Article  ADS  Google Scholar 

  18. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Briegel, H.-J., van Enk, S. J., Cirac, J. I. & Zoller, P. in The Physics of Quantum Information (eds Bouwmeester, D., Ekert, A. & Zeilinger, A.) 192–197 (Springer, Berlin, 2000)

    Google Scholar 

  20. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  21. Treutlein, P. et al. Quantum information processing in optical lattices and magnetic microtraps. Preprint at (2006).

  22. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Braginsky, V. B., Gorodetsky, M. L. & Ilchenko, V. S. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989)

    Article  ADS  Google Scholar 

  25. Vernooy, D. W., Furusawa, A., Georgiades, N. Ph., Ilchenko, V. S. & Kimble, H. J. Cavity QED with high-Q whispering gallery modes. Phys. Rev. A 57, R2293–R2296 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Spillane, S. M. et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A. 71, 013817 (2005)

    Article  ADS  Google Scholar 

  27. Courtois, J.-Y., Courty, J.-M. & Mertz, J. C. Internal dynamics of multilevel atoms near a vacuum-dielectric interface. Phys. Rev. A 53, 1862–1878 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett. 85, 6113–6115 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W. & Kimble, H. J. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Vernooy, D. W. & Kimble, H. J. Quantum structure and dynamics for atom galleries. Phys. Rev. A. 55, 1239–1261 (1997)

    Article  ADS  CAS  Google Scholar 

Download references


We thank M. Eichenfield, K. W. Goh and S. M. Spillane for their contributions to the early stages of this experiment, and T. Carmon, A. Gross and S. Walavalkar for their contributions to the current realization. The work of H.J.K. is supported by the National Science Foundation, the Disruptive Technology Office of the Department of National Intelligence, and Caltech. The work of K.J.V. is supported by DARPA, the Caltech Lee Center and the National Science Foundation. B.D., W.P.B. and T.J.K. acknowledge support as Fellows of the Center for the Physics of Information at Caltech. A.S.P. acknowledges support from the Marsden Fund of the Royal Society of New Zealand. E.W. acknowledges support as a Ford Predoctoral Fellow from the US National Academies.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. J. Kimble.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–3, Supplementary Methods, Supplementary Equations and Supplementary Discussions. This file describes our theoretical model for cavity QED with two-level atoms and a toroidal microresonator. (PDF 215 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aoki, T., Dayan, B., Wilcut, E. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing