Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts


‘Recycled’ crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle1. Yet increasingly, problems have been noted with this model2,3. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the ‘enriched’ East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Li isotopic compositions of the mantle and important recycled components.
Figure 2: Variations of δ 7 Li with other geochemical parameters in northern EPR MORB.


  1. Allègre, C. J. & Turcotte, D. L. Implications of a 2-component marble-cake mantle. Nature 323, 123–127 (1986)

    Article  ADS  Google Scholar 

  2. Stracke, A., Bizimis, M. & Salters, V. J. M. Recycling oceanic crust: quantitative constraints. Geochem. Geophys. Geosyst. 4, 8003, doi:10.1029/2001GC000223 (2003)

    ADS  Google Scholar 

  3. Niu, Y. & O'Hara, M. J. Origin of ocean island basalts: a new perspective from petrology, geochemistry and mineral physics considerations. J. Geophys. Res. 108, 2209, doi:10.1029/2002JB002048 (2003)

    ADS  Google Scholar 

  4. Elliott, T., Jeffcoate, A. B. & Bouman, C. The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet. Sci. Lett. 220, 231–245 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Chan, L. H., Edmond, J. M., Thompson, G. & Gillis, K. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151–160 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Decitre, S. et al. Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochem. Geophys. Geosyst. 3, 1007, doi:10.1029/2001GC000178 (2002)

    Article  ADS  Google Scholar 

  7. Tomascak, P. B., Widom, E., Benton, L. D., Goldstein, S. L. & Ryan, J. G. The control of lithium budgets in island arcs. Earth Planet. Sci. Lett. 196, 227–238 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Brooker, R. A., James, R. H. & Blundy, J. D. Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem. Geol. 212, 179–204 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpé, C. & McDonough, W. F. Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet. Sci. Lett. 208, 279–290 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Wunder, B., Meixner, A., Romer, R. L. & Heinrich, W. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib. Mineral. Petrol. 151, 112–120 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Niu, Y. L., Collerson, K. D., Batiza, R., Wendt, J. I. & Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20′N. J. Geophys. Res. 104, 7067–7087 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Regelous, M. et al. Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30′N since 800 ka. Earth Planet. Sci. Lett. 168, 45–63 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Prinzhofer, A., Lewin, E. & Allègre, C. J. Stochastic melting of the marble cake mantle: evidence from local study of the East Pacific Rise at 12° 50′ N. Earth Planet. Sci. Lett. 92, 189–206 (1989)

    Article  ADS  CAS  Google Scholar 

  14. Jeffcoate, A. B., Elliott, T., Thomas, A. & Bouman, C. Precise, small sample size determination of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostand. Geoanal. Res. 28, 161–172 (2004)

    Article  CAS  Google Scholar 

  15. Moriguti, T. & Nakamura, E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet. Sci. Lett. 163, 167–174 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Tomascak, P. B. & Langmuir, C. H. Lithium isotope variability in MORB. Eos 80, F1086–F1087 (1999)

    Google Scholar 

  17. Seitz, H. M., Brey, G. P., Lahaye, Y., Durali, S. & Weyer, S. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem. Geol. 212, 163–177 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Jeffcoate, A. B. et al. Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta (in the press)

  19. Magna, T., Wiechert, U. & Halliday, A. N. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet. Sci. Lett. 243, 336–353 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Chan, L. H., Alt, J. C. & Teagle, D. A. H. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 201, 187–201 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Gillis, K. M. & Coogan, L. A. Anatectic migmatites from the roof of an ocean ridge magma chamber. J. Petrol. 43, 2075–2095 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Tomascak, P. B., Tera, F., Helz, R. T. & Walker, R. J. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim. Cosmochim. Acta 63, 907–910 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P. & Zimmerman, M. Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim. Cosmochim. Acta 69, 735–751 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Zindler, A., Staudigel, H. & Batiza, R. Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175–195 (1984)

    Article  ADS  CAS  Google Scholar 

  25. Donnelly, K. E., Goldstein, S. L., Langmuir, C. H. & Spiegelman, M. The origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet. Sci. Lett. 226, 347–366 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Cooper, K. M., Eiler, J. M., Asimow, P. D. & Langmuir, C. H. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet. Sci. Lett. 220, 297–316 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Eiler, J. M., Schiano, P., Kitchen, N. & Stolper, E. M. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403, 530–534 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Hirose, K., Takafuji, N., Sata, N. & Ohishi, Y. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett. 237, 239–251 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Sun, S.-S. & McDonough, W. F. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.) 313–345 (Blackwell, London, 1989)

    Google Scholar 

  30. Brueckner, H. K., Zindler, A., Seyler, M. & Bonatti, E. Zabargad and the isotopic evolution of the sub-Red Sea mantle and crust. Tectonophysics 150, 163–176 (1988)

    Article  ADS  CAS  Google Scholar 

Download references


Analytical work was supported by a Philip Leverhulme Prize awarded to T.E. A.J. was supported by an NERC studentship. Reviews by B. Leeman were appreciated. We also thank J. Blundy, C. Hawkesworth and D. Vance for comments on versions of the mansucript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tim Elliott.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Table of all EPR MORB Li isotope data (DOC 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elliott, T., Thomas, A., Jeffcoate, A. et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing