Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum teleportation between light and matter

Abstract

Quantum teleportation1 is an important ingredient in distributed quantum networks2, and can also serve as an elementary operation in quantum computers3. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam4,5,6; later developments used optical relays7 and demonstrated entanglement swapping for continuous variables8. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved9,10. Here we demonstrate teleportation between objects of a different nature—light and matter, which respectively represent ‘flying’ and ‘stationary’ media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 1012 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58 ± 0.02 for n = 20 and 0.60 ± 0.02 for n = 5—higher than any classical state transfer can possibly achieve11. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater2. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for teleportation of light onto an atomic ensemble.
Figure 2: Raw experimental data for a series of teleportation runs.
Figure 3: Tomographic reconstruction of a teleported state with = 5 (coloured contour) versus the state corresponding to the best classical state transfer.

Similar content being viewed by others

References

  1. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Briegel, H. J., Dur, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Gottesman, D. & Chuang, I. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Furusawa, A. et al. Unconditional quantum teleportation. Sci. Tech. Froid 282, 706–709 (1998)

    CAS  Google Scholar 

  7. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Takei, N., Yonezawa, H., Aoki, T. & Furusawa, A. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)

    Article  ADS  Google Scholar 

  9. Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Hammerer, K., Wolf, M. M., Polzik, E. S. & Cirac, J. I. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Hammerer, K., Polzik, E. S. & Cirac, J. I. Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Phys. Rev. A 72, 052313 (2005)

    Article  ADS  Google Scholar 

  13. Vaidman, L. Teleportation of quantum states. Phys. Rev. A 49, 1473–1476 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Julsgaard, B., Sherson, J., Fiurášek, J., Cirac, J. I. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Julsgaard, B., Schori, C., Sørensen, J. L. & Polzik, E. S. Atomic spins as a storage medium for quantum fluctuations of light. Quant. Inf. Comput. 3 (special issue), 518–534 (2003)

    MathSciNet  CAS  MATH  Google Scholar 

  17. Julsgaaard, B., Sherson, J., Sørensen, J. L. & Polzik, E. S. Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method. J. Opt. B 6, 5–14 (2004)

    Article  ADS  Google Scholar 

  18. Sherson, J., Julsgaaard, B. & Polzik, E. S. Deterministic atom-light quantum interface. Adv. At. Mol. Opt. Phys. (in the press); preprint at http://arxiv.org/quant-ph/0601186 (2006).

  19. Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Chaneliere, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  23. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Polzik, E. S., Carri, J. & Kimble, H. J. Spectroscopy with squeezed light. Phys. Rev. Lett. 68, 3020–3023 (1992)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The experiment was performed at the Niels Bohr Institute, and was funded by the Danish National Research Foundation through the Center for Quantum Optics (QUANTOP), by EU grants COVAQIAL and QAP, and by the Carlsberg Foundation. I.C. and E.S.P. acknowledge the hospitality of the Institut de Ciències Fotòniques (ICFO) in Barcelona where ideas leading to this work were first discussed. The permanent address of K.H. is the Institut für theoretische Physik, Innsbruck, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene S. Polzik.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains additional details on the following methods used in this study. Atomic state variances, optimization of classical gains and the fidelity calculation. Projection noise measurement and determination of the coupling constant κ. Atomic decoherence. (DOC 225 kb)

Supplementary Notes

Calculation of the fidelity for a qubit teleportation and a protocol with improved fidelity. (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherson, J., Krauter, H., Olsson, R. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006). https://doi.org/10.1038/nature05136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05136

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing